Telegram Web
LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models

🖥 Github: https://github.com/dvlab-research/longlora

📕 Paper: https://arxiv.org/pdf/2309.12307v1.pdf

🔥 Dataset: https://paperswithcode.com/dataset/pg-19

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8🔥32
Privacy-preserving in-context learning with differentially private few-shot generation

🖥 Github: https://github.com/microsoft/dp-few-shot-generation

📕 Paper: https://arxiv.org/pdf/2309.11765v1.pdf

🔥 Dataset: https://paperswithcode.com/dataset/ag-news

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍1
Class Incremental Learning via Likelihood Ratio Based Task Prediction

🖥 Github: https://github.com/linhaowei1/tplr

📕 Paper: https://arxiv.org/pdf/2309.15048v1.pdf

🔥 Dataset: https://paperswithcode.com/dataset/cifar-10

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🔥32
Please open Telegram to view this post
VIEW IN TELEGRAM
👍73🔥2
Please open Telegram to view this post
VIEW IN TELEGRAM
👍83🔥2
Please open Telegram to view this post
VIEW IN TELEGRAM
👍72
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥21
PerturbScore: Connecting Discrete and Continuous Perturbations in NLP

🖥 Github: https://github.com/renke999/perturbscore

📕 Paper: https://arxiv.org/pdf/2310.08889v1.pdf

🔥 Datasets: https://paperswithcode.com/dataset/imdb-movie-reviews

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍73
📒 GigaChat нового поколения.

Разработчики @gigachat_bot изменили подход к обучению модели, а потому практически все умения модели были улучшены. В частности, речь идет о сокращении текстов, ответов на вопросы и генерации идей.

Появился и бот GigaChat в социальной сети «ВКонтакте» — после активации, его можно использовать для самых разных целей: от создания текстов до генерации изображений (за счет интеграции с Kandinsky).

Число уникальных пользователей GigaChat достигло 1 млн.

Попробовать

@data_analysis_ml
👍6
Please open Telegram to view this post
VIEW IN TELEGRAM
👍62🔥2👎1
Zero-shot Faithfulness Evaluation for Text Summarization with Foundation Language Model

CUDA_VISIBLE_DEVICES=0 python3 main.py

🖥 Github: https://github.com/jiaqisjtu/faitheval-fflm

📕 Paper: https://arxiv.org/pdf/2310.11648v1.pdf

🔥 Datasets: https://paperswithcode.com/dataset/cnn-daily-mail-1

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍3🥰1
2025/07/13 05:55:29
Back to Top
HTML Embed Code: