Warning: Undefined array key 0 in /var/www/tgoop/function.php on line 65

Warning: Trying to access array offset on value of type null in /var/www/tgoop/function.php on line 65
- Telegram Web
Telegram Web
Ртутные реки императора

По легенде первый китайский император Цинь Шихуанди, который объединил страну в 221 году до нашей эры, похоронен под холмом рядом с городом Сиань в провинции Шэньси. Спустя сто лет Историк Сыма Тянь описывает усыпальницу императора как обширное помещение, облицованное бронзой, с потолками украшенными драгоценными камнями, где находится очень точная модель императорского дворца, вокруг которого располагается столица Сяньян и далее вся империя.

По территории модельного государства протекали сотни великих китайских рек, которые содержали отнюдь не воду, а ртуть. Историк пишет, что течение ртути в реках поддерживалось с помощью специальных механизмов, перекачивающих тяжелую жидкость.

Когда в 1974 году нашли знаменитую терракотовую армию и соотнесли локацию находки с описаниями Сымы Тяня, поняли, что гроб императора должен быть в радиусе километра.

Последующие раскопки позволили понять, что терракотовая армия является только частью большого подземного комплекса и даже идентифицировали курган, где может находиться император, но раскопки приостановили из страха, что могут повредить содержимое, в частности, ртутные реки.

Тем не менее, были проведены различные неинвазивные тесты, в том числе химический анализ почвы, который позволил установить повышенное содержание ртути в непосредственной близости к кургану.

В летописях историка Сымы подземная модель империи была правильно ориентиована, то есть совпадала с реальной географией страны. Исследования установили, что наибольшие содержания ртути совпадали с расположениями китайских морей и дельтой реки Янцзы, косвенно подтверждая легенду.

(из книги «Сказки периодической таблицы» Хью Олдерси-Уильямс; фото с сайта Bridgeman Images)
13 сентября 1892 года состоялась торжественная церемония закладки «Менделеевского центра» — исторического здания химической лаборатории Санкт-Петербургского университета, расположенного во дворе Двенадцати коллегий

Необходимость строительства отдельного здания для проведения лекций по химии и практических занятий в Санкт-Петербургском университете возникла в связи с увеличением учебных часов и недостатком пространства в помещениях Двенадцати коллегий. В конце XIX века химию в университете изучало около 400 студентов ежегодно, среди которых были и юристы, поскольку знание химии было необходимо для работы в Таможенном ведомстве. О важности строительства отдельного здания для химии еще в 1886 году в докладной записке руководству университета писал профессор Д. И. Менделеев, к которому присоединились его коллеги по кафедре химии — А. М. Бутлеров и Н. А. Меншуткин. В этом документе поднимался вопрос о необходимости кардинального преобразования преподавания химии в Петербургском университете, что требовало создания совершенно новой химической лаборатории. Менделеев в своих набросках представил общий проект будущей лаборатории и указал на ее предполагаемую стоимость.

Созданием проекта здания химической лаборатории руководил профессор-химик Н. А. Меншуткин. Автором же этого амбициозного проекта стал академик архитектуры А. Ф. Красовский, прославившийся своими гражданскими постройками в Санкт-Петербурге. Летом 1891 года профессор Меншуткин и архитектор Красовский отправились в заграничное путешествие, чтобы ознакомиться с крупнейшими химическими лабораториями Западной Европы. Они посетили Берлин, Мюнхен, Вену, Будапешт, Цюрих и другие центры высшего образования. Известные ученые, такие как А. В. Гофман в Берлине и А. Байер в Мюнхене, охотно делились своими знаниями с русскими коллегами. При осмотре лабораторий Меншуткин проявлял особое внимание к деталям их организации и оборудования, особенно к устройству вентиляции, отопления и освещения. Таким образом, при разработке архитектурного решения были учтены достижения лучших мировых лабораторий.
Строительство нового здания предъявляло ряд важных требований. В числе первоочередных задач стояла необходимость обеспечить максимальную близость к главному корпусу университета — Двенадцати коллегиям. Кроме того, лаборатория должна была получать достаточное количество естественного света, что можно было достичь лишь при условии, что здание будет свободно стоять, не примыкая к другим сооружениям. В результате обращения к начальству Первого Санкт-Петербургского кадетского корпуса университету был безвозмездно передан участок земли, расположенный на современной северной границе территории Петербургского университета, непосредственно соседствующий с южной стороной Ботанического сада. Архитектор мастерски вписал это внушительное здание в узкое пространство, создав гармоничное сочетание архитектуры.

Наконец, к весне 1892 года проект лаборатории был утвержден и в мае того же года началось долгожданное строительство нового здания химической лаборатории Петербургского университета, 13 сентября состоялась торжественная церемония закладки лаборатории, на которую собрались выдающиеся русские ученые, среди которых был и сам Д. И. Менделеев.

Историческое фото из архива Санкт-Петербургского отделения Российского Химического общества им. Д. И. Менделеева.
Современный вид - фотография О. М. Осмоловской, 2007 год

#химия_в_Петербурге #300летСПбГУ #СПбГУ
#российскаянаука #деньвисториихимии #популяризациянауки
ДНК Сад

В королевском ботаническом саду в Лондоне сейчас проходит выставка работ современного британского художника Марка Куина, который долгое время интересовался взаимосвязями между природой и человечеством.

Одна из работ под названием «ДНК сад» была вдохновлена экспериментами, которые Куин проводил в коллаборации с Нобелевским лауреатом Джоном Салстоном, получившим премию по физиологии и медицине за вклад в секвенирование генома человека.

Работа представляет собой металлический алтарь, на котором расположена серия портретов ДНК, визуализированных и сохраненных на агарозном геле. Среди них 2 ДНК принадлежат натурщикам (или натущицам), а другие 75 – различным видам растений.

В своей работе Куин хотел выразить идею о том, что различные виды живой природы имеют общего предка – одноклеточных амеб, которые жили миллиарды лет назад. ДНК сад - это генетическая библиотека, напоминающая о том, что человек и природа изначально были едины, до тех пор пока эволюционные процессы нас не разделили.
Эпсомская соль

Эпсомская соль, английская соль - это все названия сульфата магния (точнее его семиводного кристаллогидрата).

Согласно легенде, когда-то недалеко от маленького английского города Эпсом местные фермеры заметили, что их скот отказывается пить из некоторых природных источников. Вкус у воды был неприятный, слишком горький, зато если в ней искупаться, оказалось, она отлично расслабляет тело и Эпсом вскоре стал популярным курортом.

В конце 17 века английский ботаник, врач и один из пионеров дактилоскопии Неемия Грю выделил из воды сульфат магния, и эпсомскую соль стали продавать всем желающим. В начале XIX века больница Святого Варфоломея в Лондоне использовала две с половиной тонны Эпсомской соли каждый год. А сейчас это многомилионный, а то и миллиардный бизнес.

В наши дни ванны с солью Эпсома часто применяются для снятия мышечного напряжения, болей в суставах и стресса. Считается, что она улучшает кровообращение и способствует выведению токсинов. Многие годы считалось, что это все благодаря ионам магния, которые проникают трансдермально (магний — ключевой элемент для более чем 300 ферментативных реакций в организме), но этому факту нет строгих научных подтверждений. Собственно в обзоре 2017 года так и написано – мы проанализировали все факты, но…непонятно, как магний проникает и проникает ли.

Основной аргумент против – то, что в клетки магний попадает не диффузией, а с помощью специальных транспортеров магния, которые не функцинируют в клетках ороговевшего верхнего слоя кожи. Но авторы предполагают, что он может попасть внутрь через потовые железы или волосяные фолликулы.

Вообщем, попадает магний или нет, а может дело вовсе и не в магнии, а в сульфатах, но спится после ванны с эпсомской солью и правда хорошо.

Данная статья не носит рекомендательный характер. Всегда читайте инструкцию по применению и список противопоказаний.
19 октября — день джин-тоника

Джин-тоник — это освежающий напиток, состоящий из тоника и джина, история которого уходит корнями в XVIII век, когда он появился в колониальной Индии. В ходе британской экспансии, вызванной богатством природных ресурсов Индии, европейцы столкнулись с малярией — ужасной болезнью, знаний о лечении которой у них не было. В результате болезнь быстро приобрела эпидемический характер. В борьбе с малярией колонизаторы начали употреблять напиток на основе хинина — тоник, который эффективно предотвращал эту болезнь. Однако горький вкус хинина затруднял его употребление, и поэтому его смешивали с сахаром и джином, который в то время служил безопасной альтернативой местной воде.

Известно, что экстракт коры хинного дерева использовались для лечения малярии по крайней мере с 1632 года, и он был завезен в Испанию еще в 1636 году иезуитскими миссионерами. В 1820 году французские исследователи Пьер Жозеф Пеллетье и Жозеф Бенаиме Каванту впервые выделили чистый хинин, дав этому веществу название, основанное на словах местного племени кечуа — quina или quina-quina, что переводится как «кора коры» или «святая кора». К середине XIX века хинин начал широко использоваться в профилактике малярии, и англичане уже использовали около 700 тонн коры хинного дерева ежегодно.

Чтобы избавиться от зависимости от хинного дерева в производстве хинина, Август Гофман в 1849 году, вскоре после назначения его президентом Королевского химического колледжа, обозначил синтез хинина как ближайшую задачу для химиков. В 1850 году Французское фармацевтическое общество объявило премию в 4000 франков тому, кто к 1 января 1851 года получит полфунта синтетического хинина. Однако задача оказалась слишком сложной для химиков того времени, и полный химический синтез хинина был осуществлён лишь в 1944 году американскими учеными Робертом Вудвордом и Уильямом Дерингом. Впоследствии были разработаны более эффективные методы синтеза, но ни один из них не может конкурировать по стоимости с выделением алкалоида из природных источников. Хинное дерево по-прежнему остаётся единственным источником хинина.

Хинин имеет ярко выраженный горький вкус, способствует увеличению секреции желудочного сока и стимулирует аппетит. В средние века его использовали для успокоения и как обезболивающее. В современных тониках содержание хинина значительно ниже исторического — менее 80 мг на литр, а некоторые не содержат его вовсе. Терапевтическая доза хинина составляет около грамма, тогда как смертельная превышает 8 граммов, что делает современный тоник ни лекарством, ни ядом — в отличие от джина.

К слову об Индии: за 200 лет британского правления в Индии доход на душу населения никогда не увеличивался, а во второй половине XIX века сократился вдвое. Политика колонизаторов привела к голоду, унесшему десятки миллионов жизней. В 1901 году средняя продолжительность жизни индийцев составляла 23 года для мужчин и 24 года для женщин, а в 1921 году снизилась до 19 и 21 года соответственно. Во время Второй мировой войны в Индии началась кампания гражданского неповиновения с требованием немедленного ухода британцев. Несмотря на попытки британского правительства заручиться поддержкой индийцев в обмен на обещания независимости, 15 августа 1947 года Британская Индия самостоятельно обрела свободу и разделилась на два доминиона — Индию и Пакистан.

#химия_в_жизни
#историяхимии
#тожехимия
Химия осенних листьев

Только осенью, в пору увядания, листья раскрываются во всей красе.

Первым прощается зеленый пигмент хлорофилл, и обнажает желтые и оранжевые цвета каротеноидов. Они более устойчивые, они всегда там были, под зеленью, ждали коротких дней и холодных ночей, ждали своего часа.

Каротеноиды – это тетратерпены, которые состоят из 8 изопреновых единиц. Их называют каротинами, если они представляют собой «чистые» углеводороды, и называют ксантофиллами, если они содержат в составе кислород.

Виолаксантин, например, это ксантофилл, оранжевый пигмент, который содержится во многих растениях. Его используют как пищевой краситель (Е161е) в Австралии и Новой Зеландии.

Листья некоторых деревьев, например японского красного клена, осенью становятся полностью красными. За это ответственна другая группа пигментов – антоцианы. Предполагается, что их растения синтезирует в качестве защиты от от происходящих на молекулярном уровне разрушений.

Одним из представителей антоцианов является цианидин. В одной работе, опубликованной в Journal of chemical education, студенты из Финляндии собирали осенние листья и экстрагировали из них пигменты. Экстракты были исследованы с помощью жидкостной хроматографии с тандемной масс-спектрометрией. Так вот, цианидин был обнаружен во всех красных листьях, которые они собрали.

Авторы надеятся, что их методика может быть полезна для создания запоминающихся лабораторных работ для школьников и развития сотрудничества с вузами, которые могли бы предоставить свою приборную базу, а заодно привлечь в будущем талантливых студентов.

Если бы у меня была такая лабораторная в школе, было бы здорово.
Клеточные магистрали

Если взглянуть на молекулярную архитектуру животной клетки за пределами привычных клеточной мембраны и ядра, то можно с восхищением увидеть разветвленные пути клеточного скелета.

Цитоскелет - это очень динамичная и часто неуловимая сеть белковых филаментов, которая простирается по всей клетке. Эти белковые филаменты собираются из молекул белковых мономеров и бывают трех видов: актиновые филаменты, промежуточные филаменты и микротрубочки, образующие трехмерную сетку. Цитоскелет поддерживает клетку, придает ей форму, организует органеллы в цитоплазме, а также участвует в транспорте молекул, делении клеток, передаче сигналов и движении клеток. Масштабный пример - мышечные клетки, которые полны организованных «волокон» цитоскелета, обеспечивающие сокращение мышц. Функционально можно представить, что сеть цитоскелета это мышечная, костная, кровеносная и нервная системы клетки в совокупности.

Железнодорожная сеть и толкающая сила, цитоскелет - это буквально система автомобильных дорог внутри клеток. Существует группа «моторных белков», которые могут транспортировать грузы, двигаясь по цитоскелету, подобно множеству маленьких грузовиков, движущихся по внутриклеточной транспортной системе. Самые разные внутриклеточные карго, включая белки, РНК, везикулы и даже целые органеллы, могут перемещаться по клетке, прикреплённые к этим белкам-двигателям.

Любопытно, что некоторые бактерии (например, Listeria) в процессе эволюции научились использовать клеточный цитоскелет для передвижения внутри клетки. Неудивительно, что мутации в цитоскелетных и родственных им белках тесно связаны с некоторыми врожденными заболеваниями, такими как мышечная дистрофия. Предполагается, что дерегуляция цитоскелета может также играть роль в метастазировании рака, и были разработаны некоторые противораковые препараты, нацеленные на белки цитоскелета, например доцетаксел или паклитаксел.

Изображение:
Микроскопическое изображение клетки фибробласта крысы, окрашенной одновременно на микротрубочки (зеленый), актиновые филаменты (синий) и промежуточные филаменты (красный). Изображение взято с обложки книги «The Cytoskeleton», изданной Cold Spring Harbor Laboratory Press.


Источники :
Большой ресурс с примерами
https://open.oregonstate.education/cellbiology/chapter/cytoskeleton/
Для визуализации см. https://www.youtube.com/watch?v=tO-W8mvBa78
Для тех, кто хочет пойти дальше и узнать больше о движении клеток, см. https://www.youtube.com/watch?v=1Hets5N7bKA
Кунсткамере 310 лет

6 декабря отмечается День Кунсткамеры — музея антропологии и этнографии им. Петра Великого Российской академии наук. Годом основания Кунсткамеры считается 1714 год, когда Петр I распорядился о переводе царской библиотеки и коллекции редкостей из Москвы в Санкт-Петербург. Уникальные экспонаты были размещены в одном из помещений Летнего дворца, получившем название «Кунсткамера», что в переводе означает «кабинет редкостей». Строительство специального здания для музея началось в 1718 году.

Десять лет спустя, 8 февраля 1724 года, Петр I осуществил вторую часть своего «академического» проекта — была учреждена Академия наук и Университет. В новом здании на стрелке Васильевского острова разместились Академия наук, музей и библиотека, открывшиеся 6 декабря 1728 года. Поскольку именно здесь начала свою работу Академия наук, это здание стало символом Российской академии наук, и его изображение было вынесено на эмблему РАН.

Кунсткамера — это не только собрание редкостей, но и место, которое вдохновляют на новые открытия.

#историянауки #российскаянаука
#300летРАН #300летСПбГУ #СПбГУ
50 оттенков оксида кобальта

Современные керамисты добавляют в краску оксид кобальта для создания насыщенного синего цвета. Наложение слоев краски в различных вариациях дает богатую палитру оттенков. Эта техника появилась давно, еще в древние времена и с тех пор не потеряла своей актуальности.

Кобальт был идентифицирован в синей стеклянной лампе из Месопотамии, возраст которой датируется 2000 лет до нашей эры, в синем стекле из Древнего Египта, Сирии и Помпеи. Персидские ремесленники в VIII-XIII веках использовали добавки кобальтовой руды при создания низкотемпературных глазурей. По всей видимости, руда содержала кобальтин CoAsS, серебристо-белый минерал с красноватым оттенком, но чаще черный из-за присутствия железа, или эритрин Co3(AsO4)2•8H2O – минерал малинового цвета.

Позже в Китае во время правления династии Юань (1271 – 1368 гг) мастера из Цзиндэчжэня изобрели новый метод работы с керамикой – теперь фарфор, с нанесенным «кобальтовыми» красками рисунком, обжигали при высокой, более 1200 С, температуре. Китайский синий фарфор стал более доступным и популярным во всем мире в XVII-XVIII веках.

Роспись оксидом кобальта использовали голландские мастера при создании Дельфтского фаянса, а в России «синий кобальт» стал визитной карточкой Гжели.

Фото: Керамистка Фелисити Айлиф использует оксид кобальта для росписи своих гигантских ваз.
Зимние специи

Ароматный глинтвейн, чай-латте и имбирные пряники могут согреть и порадовать морозным вечером или пасмурным утром. И даже от названия добавленных специй – корица, гвоздика, мускатный орех, имбирь – по телу разливается тепло.

Давайте разберемся, какие молекулы участвуют в создании особого вкуса.

Циннамаль, или коричный альдегид, вносит основной вклад в аромат корицы. В научном мире активно исследуют его антибактериальные свойства и используют как модельный субстрат для селективного гидрирования двойных связей при разработке новых фотокатализаторов.

Эвгенол
, фенольное соединение, является самым важным компонентом гвоздики. Сама по себе гвоздика представляет высушенные нераскрывшиеся бутоны гвоздичного дерева, а эфирное масло из бутонов содержит до 80-90% эвгенола. Эвгенол используют при создании парфюмерных композиций, и параллельно исследуют его противораковые и противовоспалительный свойства. Слово «eugenol” можно часто встретить в самом конце списка ингридиентов различных косметических средств. Это связано с тем, что вещество является аллергеном и производители обязаны указывать его наличие, даже если он добавлен не в чистом виде, а в составе какого-нибудь эфирного масла.

Терпкий аромат сабинена, бициклического монотерпена содержащегося в мускатном орехе и кардамоне, придает вкусу блюд глубину и нотку природной свежести. В 2023 вышла работа, в которой предлагают использовать сабинен в качестве «зеленого» растворителя. Его можно получить из биомассы, он нетоксичен и его можно легко очистить с помощью дистилляции для повторного использования.

Жгучий вкус и согревающий эффект имбиря обеспечивается соединением под названием гингерол. По своей химической структуре, гингерол напоминает капсаицин, содержащийся в красном перце. Если имбирь подвергается тепловой обработке, например вы печете пряники или готовите карри, то гингерол превращается в менее острый и более сладкий зингерон. А вот если его сушить – то станет острее – после дегидратации превратится в сегаол.

Кажется, согревают не только специи, но и знания их химических свойств. А какой ваш любимый зимний напиток?
Поздравляем подписчиков нашего канала с наступающим Новым 2025 годом!

2024 год подходит к завершению — это был терпкий год, наполненный эмоциями, волнениями и испытаниями. Мы рады, что вы, наши дорогие читатели, провели его вместе с нами в Гостиной, обсуждая химические открытия, молекулы и жизненные истории. Нам приятна ваша компанию, и мы с нетерпением ждем новых бесед в Новом году.

Особая благодарность нашим старшим товарищам из сообщества «Химия в России и за рубежом» за активную поддержку. Вдохновляюще, когда репостит самый уважаемый химический телеграм-канал.

Желаем всем счастья, отличного настроения и новогоднего чуда!

С теплотой,
Молекулярная гостиная
Менделеев и чемоданы

Миф о том, что Менделеев собственноручно изготавливал чемоданы и торговал ими в Гостином Дворе, образовался из отдельных обрывочных фактов и воспоминаний коллеги Менделеева по Главной Палате мер и весов Ольги Эрастовны Озаровской, где трудился и Дмитрий Иванович последние годы своей жизни. Именно она в своих воспоминаниях написала о необычном увлечении ученого.

Правда лишь в том, что Дмитрий Иванович действительно имел опыт переплётных и картонажных работ. Переплетно-картонажное дело было одним из хобби Менделеева.

Он довольно искусно изготавливал из картона и кожи папки и ящики для своих бумаг и рукописей, делал рамки для фотографий.

В музее до сих пор хранятся столики из картона, сделанные руками Дмитрия Ивановича⬆️

А в Гостином Дворе его могли видеть не потому, что он продавал чемоданы, а потому, что покупал там материалы☝️

#Менделеев_мифы
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Страница из конспекта лекций по химии студента Менделеева

В 1854 Дмитрий Менделеев стал четверокурсником. Начался самый интересный год его учебы. Четверокурсникам почти не нужно было посещать обязательных лекций, они занимались практическими и лабораторными работами, писали сочинения и «рассуждения» на заданные профессорами научные и педагогические темы.

Менделеев написал ряд пробных лекций, которые в институте считались обязательными для подтверждения того, что студенты «соответствуют их назначению и современному состоянию наук».

У профессора Брандта он подготовил лекцию «О влиянии теплоты на распространение животных», у Куторги — «Об ископаемых растениях», у Вышнеградского — «О телесном воспитании детей от рождения до семилетнего возраста». Была еще самостоятельно подготовленная лекция «О школьном образовании в Китае».

Все они были оценены высшим баллом.

#День_студента
Please open Telegram to view this post
VIEW IN TELEGRAM
Ткани против вирусов

Коронавирус в газетных заголовках теперь встречается чуть чаще чем грипп, а вот научные работы, им вдохновленные, все продолжают выходить.

Вирусная эпидемия напомнила нам, что война человеческого организма с микрозахватчиками - никогда не заканчивается и к потенциальным угрозам нужно быть готовым. Например, разрабатывать новые противовирусные лекарства, уметь быстро создать вакцину, при проектировании общественных пространств можно использовать противовирусные покрытия, а на индивидуальном уровне можно ввести в обиход противовирусные ткани - не только для масок, а для одежды в целом. Проснулся с утра на противовирусной наволочке под противовирусным пододеяльником, выпил чашечку кофе (он, благо, сам по себе, противовирусный), сидя за столиком, покрытым противовирусной краской, одел свои противовирусные джинсы и футболку и пошел на работу.

Вот, кстати, о футболках. В статье, опубликованной в журнале nature в 2023 году, белую хлопковую футболку замочили в растворе содержащем ионы меди (II), высушили и получили голубую футболку, которая эффективна против вируса гриппа, вируса табачной мозаики, синегнойной палочки и сальмонеллы. Авторы показали, что медь за счет координационных связей встроилась в структуру хлопковых волокон (в смысле целлюлозной матрицы) , поэтому при стирке цвет и полезные свойства не исчезают.

К другим методам создания противовирусных тканей является внедрение в структуру уже существующих текстильных волокон наночастиц металлов или оксидов металлов, окрашивание органическими красителями с известными противовирусными свойствами, создание новых синтетических волокон из новых противовирусных полимеров.

А вы бы себе купили противовирусную футболку?
Не все то золото, что блестит

В самый романтичный день года посылаем вам сердце из золотых наночастиц диаметром 20 нм.

С любовью, Молекулярная Гостиная

Фото: М. Эллис
Хлопин Виталий Григорьевич – основатель советской школы радиохимии

В январе исполнилось 135 лет со дня рождения Виталия Григорьевича Хлопина – выдающегося выпускника и профессора Санкт-Петербургского университета, основателя школы радиохимии в СССР и участника советского атомного проекта.

Хлопин родился 26 января 1890 года в Перми в семье ученого-гигиениста и революционера Григория Витальевича Хлопина. Окончив физико-химический факультет Санкт-Петербургского университета в 1912 году, он остался работать на кафедре общей химии ассистентом у Льва Александровича Чугаева. Под руководством Чугаева Хлопин прошел подготовку к профессорско-преподавательской деятельности, занимаясь экспериментальными исследованиями в области химии платиновых соединений, и разработал экономичный способ добычи платины из отечественного сырья.

В 1915 году судьба свела Хлопина с Владимиром Вернадским, который пригласил работать в Радиологическую лабораторию Академии наук. Эта лаборатория, разместившаяся в бывшей мастерской Архипа Куинджи, стала колыбелью советского атомного проекта.

К 1917 году интерес к радию перешел из научной сферы в практическую: военные узнали о его применении в светосоставах. Возникла необходимость добычи радия из отечественного сырья. Весной 1918 года ВСНХ поручил Академии наук организовать завод по извлечению радия из российских урано-ванадиевых руд. В 1922 году в Санкт-Петербурге открылся Радиевый институт – его возглавил Владимир Вернадский, а 32-летний Хлопин стал заместителем и руководителем химического отдела. В том же году они получили первые образцы советского радия

В 1924 году Виталий Григорьевич Хлопин открыл закон распределения микрокомпонентов между кристаллами макрокомпонента и насыщенным раствором, вошедший в науку как закон Хлопина, и разработал формулы для оценки распределения радиоактивных элементов между твердой и жидкой фазами. Его ключевые достижения включают исследования миграции радионуклидов в земной коре, распределения благородных газов) в минералах и газах, анализ радий- и борсодержащих вод, а также поиск стратегического сырья. Хлопин также внес вклад в развитие изотопной геохронологии, включая калий-аргоновый метод определения возраста геологических формаций. В 1931 году в его честь был назван минерал хлопинит, обнаруженный на Байкале.

К второй половине 1930-х годов СССР прочно вошел в тройку мировых лидеров в области ядерных исследований. В. Г. Хлопин, осознавая важность экспериментальной базы, создал в Радиевом институте центр по производству радий-бериллиевых и радон-бериллиевых нейтронных источников, а в 1932 году инициировал строительство циклотрона, который был запущен в 1937 году и стал первым в Европе. Под руководством Хлопина в институте работал молодой Игорь Курчатов, будущий отец советской атомной программы.

В 1936 году Хлопин возглавил Радиевый институт, а в 1939 году был избран действительным членом АН СССР. На следующий год он стал председателем Комитета по урановой проблеме при Президиуме АН СССР. Виталий Григорьевич Хлопин был удостоен чести стать Первым Менделеевским чтецом. 17 марта 1941 года в стенах Ленинградского университета он прочитал торжественную лекцию на тему «Превращение элементов и периодический закон», подчеркнув неразрывную связь между открытиями Менделеева и современными достижениями в области химии и физики.

С началом Великой Отечественной войны Хлопин организовал эвакуацию института в Казань, где занимался мобилизацией научных ресурсов для обороны. К атомному проекту в Ленинграде вернулись в 1944 году – сразу после освобождения города от фашистской блокады.

В 1945 году Виталий Григорьевич возглавил первую в СССР кафедру радиохимии в Ленинградском университете, заложив основы подготовки нового поколения ученых.

Скончался Виталий Григорьевич 10 июля 1950 года. В том же году Радиевый институт был назван его именем, увековечив вклад ученого в науку и развитие страны. В честь Хлопина также названа улица в Санкт-Петербурге.

#80летатомнойпромышленности

#химия_в_Петербурге #российскаянаука #деньвисториихимии #популяризациянауки
2025/03/06 02:10:11
Back to Top
HTML Embed Code: