Telegram Web
Python Docker Tutorials

Docker is a containerization tool used for spinning up isolated, reproducible application environments. It is a popular development tool for Python developers.

https://realpython.com/tutorials/docker/
πŸ‘5❀‍πŸ”₯2❀2
The Transformer Attention Mechanism

https://machinelearningmastery.com/the-transformer-attention-mechanism/

βœ… More β™₯️β™₯️ = more posts

@CodeProgrammer β™₯️
πŸ‘5❀3❀‍πŸ”₯1
This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning

https://www.tgoop.com/DataScienceM
https://www.tgoop.com/DataScienceM
❀‍πŸ”₯3πŸ‘2πŸ€”1
Data Version Control With Python and DVC

https://realpython.com/python-data-version-control

@CodeProgrammer β™₯️
πŸ‘6
This channels is for Programmers, Coders, Software Engineers.

0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages

https://www.tgoop.com/addlist/8_rRW2scgfRhOTc0
❀4πŸ‘1
πŸ–₯ 10 Advanced Python Scripts For Everyday Programming

1. SpeedTest with Python
# pip install pyspeedtest
# pip install speedtest
# pip install speedtest-cli

#method 1
import speedtest

speedTest = speedtest.Speedtest()
print(speedTest.get_best_server())

#Check download speed
print(speedTest.download())

#Check upload speed
print(speedTest.upload())

# Method 2

import pyspeedtest
st = pyspeedtest.SpeedTest()
st.ping()
st.download()
st.upload()

2. Search on Google

# pip install google

from googlesearch import search

query = "Medium.com"

for url in search(query):
print(url)


3. Make Web Bot
# pip install selenium

import time
from selenium import webdriver
from selenium.webdriver.common.keys import Keys

bot = webdriver.Chrome("chromedriver.exe")
bot.get('[http://www.google.com'](http://www.google.com'))

search = bot.find_element_by_name('q')
search.send_keys("@codedev101")
search.send_keys(Keys.RETURN)
time.sleep(5)
bot.quit()


4. Fetch Song Lyrics
# pip install lyricsgenius

import lyricsgenius

api_key = "xxxxxxxxxxxxxxxxxxxxx"

genius = lyricsgenius.Genius(api_key)
artist = genius.search_artist("Pop Smoke", max_songs=5,sort="title")
song = artist.song("100k On a Coupe")

print(song.lyrics)


5. Get Exif Data of Photos
# Get Exif of Photo

# Method 1
# pip install pillow
import PIL.Image
import PIL.ExifTags

img = PIL.Image.open("Img.jpg")
exif_data =
{
PIL.ExifTags.TAGS[i]: j
for i, j in img._getexif().items()
if i in PIL.ExifTags.TAGS
}
print(exif_data)


# Method 2
# pip install ExifRead
import exifread

filename = open(path_name, 'rb')

tags = exifread.process_file(filename)
print(tags)


6. OCR Text from Image
# pip install pytesseract

import pytesseract
from PIL import Image

pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'

t=Image.open("img.png")
text = pytesseract.image_to_string(t, config='')

print(text)


7. Convert Photo into Cartonize

# pip install opencv-python

import cv2

img = cv2.imread('img.jpg')
grayimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
grayimg = cv2.medianBlur(grayimg, 5)

edges = cv2.Laplacian(grayimg , cv2.CV_8U, ksize=5)
r,mask =cv2.threshold(edges,100,255,cv2.THRESH_BINARY_INV)

img2 = cv2.bitwise_and(img, img, mask=mask)
img2 = cv2.medianBlur(img2, 5)

cv2.imwrite("cartooned.jpg", mask)


8. Empty Recycle Bin
# pip install winshell

import winshell
try:
winshell.recycle_bin().empty(confirm=False, /show_progress=False, sound=True)
print("Recycle bin is emptied Now")
except:
print("Recycle bin already empty")


9. Python Image Enhancement
# pip install pillow

from PIL import Image,ImageFilter
from PIL import ImageEnhance

im = Image.open('img.jpg')

# Choose your filter
# add Hastag at start if you don't want to any filter below

en = ImageEnhance.Color(im)
en = ImageEnhance.Contrast(im)
en = ImageEnhance.Brightness(im)
en = ImageEnhance.Sharpness(im)

# result
en.enhance(1.5).show("enhanced")


10. Get Window Version
# Window Version

import wmi
data = wmi.WMI()
for os_name in data.Win32_OperatingSystem():
print(os_name.Caption) # Microsoft Windows 11 Home


https://www.tgoop.com/DataScienceT
❀8πŸ‘6
πŸ–₯ Unraveling the Magic of Sorting: A Python Guide for Novices

β–ͺBubble Sort

def bubble_sort(list):
for i in range(len(list)):
for j in range(len(list) - 1):
if list[j] > list[j + 1]:
list[j], list[j + 1] = list[j + 1], list[j] # swap
return list


β–ͺSelection Sort

def selection_sort(list):
for i in range(len(list)):
min_index = i
for j in range(i + 1, len(list)):
if list[min_index] > list[j]:
min_index = j
list[i], list[min_index] = list[min_index], list[i] # swap
return list


β–ͺInsertion Sort

def insertion_sort(list):
for i in range(1, len(list)):
key = list[i]
j = i - 1
while j >=0 and key < list[j] :
list[j+1] = list[j]
j -= 1
list[j+1] = key
return list

β–ͺQuick Sort

def partition(array, low, high):
i = (low-1)
pivot = array[high]

for j in range(low, high):
if array[j] <= pivot:
i = i+1
array[i], array[j] = array[j], array[i]
array[i+1], array[high] = array[high], array[i+1]
return (i+1)

def quick_sort(array, low, high):
if len(array) == 1:
return array
if low < high:
partition_index = partition(array, low, high)
quick_sort(array, low, partition_index-1)
quick_sort(array, partition_index+1, high)

https://www.tgoop.com/CodeProgrammer
πŸ‘6❀2
NumPy Tutorial: Your First Steps Into Data Science in Python

https://realpython.com/numpy-tutorial

https://www.tgoop.com/CodeProgrammer
πŸ‘4❀‍πŸ”₯1
Building an Image Recognition API using Flask.

Step 1: Set up the project environment

1. Create a new directory for your project and navigate to it.
2. Create a virtual environment (optional but recommended):
(Image 1.)
3. Install the necessary libraries (image 2.)

Step 2: Create a Flask Web Application
Create a new file called app.py in the project directory (image 3.)

Step 3: Launch the Flask Application
Save the changes and run the Flask application (image 4.)

Step 4: Test the API
Your API is now up and running and you can send images to /predict via HTTP POST requests.
You can use tools such as curl or Postman to test the API.
β€’ An example of using curl (image 5.)
β€’ An example using Python queries (image 6.)

https://www.tgoop.com/DataScienceT
πŸ‘5❀1🐳1
πŸ“© Python Email Automation Script

import smtplib
from email.mime.text import MIMEText


sender_email = "[email protected]"
recipient_email = "[email protected]"

subject = "Automated Email"
message = "This is an automated email sent using Python."


# SMTP server configuration (example: Gmail)


smtp_server = "smtp.gmail.com"
smtp_port = 587
smtp_username = "your_username"
smtp_password = "your_password"



msg = MIMEText(message)
msg["Subject"] = subject
msg["From"] = sender_email
msg["To"] = recipient_email
try:

server = smtplib.SMTP(smtp_server, smtp_port)
server.starttls()
server.login(smtp_username, smtp_password)
server.sendmail(sender_email, recipient_email, msg.as_string())
print("Email sent successfully!")

except Exception as e:
print("Error sending email:", str(e))

finally:

server.quit()

https://www.tgoop.com/DataScienceT
πŸ‘9❀3❀‍πŸ”₯1😍1
We launched a special bot some time ago to download all scientific, software and mathematics books The bot contains more than thirty million books, and new books are downloaded first, In addition to the possibility of downloading all articles and scientific papers for free

To request a subscription: talk to @Hussein_Sheikho
πŸ‘5❀2
πŸ‘3❀1❀‍πŸ”₯1
2025/07/13 17:23:41
Back to Top
HTML Embed Code: