Configuration models for random directed hypergraphs
Yanna J. Kraakman, Clara Stegehuis
Many complex systems show non-pairwise interactions, which can be captured by hypergraphs. In this work, we establish configuration models in which both the vertex and the hyperarc degrees are preserved for different classes of directed hypergraphs (containing self-loops, degenerate hyperarcs and/or multiple hyperarcs). We propose an edge-swapping method to uniformly sample from these configuration models and prove that this method indeed samples uniformly from the classes with self-loops and multiple hyperarcs, and that the method does not sample uniformly from classes without self-loops, or with self-loops and degenerate hyperarcs but without multiple hyperarcs. We present a partial result on the class with self-loops, but without degenerate hyperarcs or multiple hyperarcs.
https://arxiv.org/abs/2402.06466
Yanna J. Kraakman, Clara Stegehuis
Many complex systems show non-pairwise interactions, which can be captured by hypergraphs. In this work, we establish configuration models in which both the vertex and the hyperarc degrees are preserved for different classes of directed hypergraphs (containing self-loops, degenerate hyperarcs and/or multiple hyperarcs). We propose an edge-swapping method to uniformly sample from these configuration models and prove that this method indeed samples uniformly from the classes with self-loops and multiple hyperarcs, and that the method does not sample uniformly from classes without self-loops, or with self-loops and degenerate hyperarcs but without multiple hyperarcs. We present a partial result on the class with self-loops, but without degenerate hyperarcs or multiple hyperarcs.
https://arxiv.org/abs/2402.06466
arXiv.org
Configuration models for random directed hypergraphs
Many complex systems show non-pairwise interactions, which can be captured by hypergraphs. In this work, we establish configuration models in which both the vertex and the hyperarc degrees are...
👍3
Interested in network dynamical systems with higher-order interactions? Apply for a #PhD at the Vrije Universiteit Amsterdam
https://workingat.vu.nl/vacancies/beyondtheedge-phd-position-in-network-dynamical-systems-amsterdam-1059512
https://workingat.vu.nl/vacancies/beyondtheedge-phd-position-in-network-dynamical-systems-amsterdam-1059512
workingat.vu.nl
Vacancy — BeyondTheEdge PhD Position in Network Dynamical Systems
Do you have an inquisitive mind and a passion for mathematics and statistics? Please apply for a PhD position at Vrije Universiteit Amsterdam.
👍4
Forwarded from Sitpor.org سیتپـــــور
Media is too big
VIEW IN TELEGRAM
قوس داستانی و خمهای عاطفی در قصهها
کِرْت وانهگت، نویسنده فقید آمریکایی، معتقد بود که تمام داستانها را میتوان بر اساس شکل روایی و قوس داستانی آنها به دستههای انگشتشماری طبقهبندی کرد. این ادعا سالها بعد به صورت کمی راستیآزمایی شد. در این ارائه ابتدا ادبیات داستانپردازی محاسباتی را مرور میکنیم. سپس نشان میدهیم که سریالهای ترکی در سالهای گذشته عمدتا چه نوع قوس داستانی داشتهاند و کم و کیف موفقیتشان در گیشه چگونه بوده است.
📃 اسلایدها
🎙فایل صوتی
🎞 ویدیو در یوتیوب
----------------------------------------------
@sitpor | sitpor.org
instagram.com/sitpor_media
#سیتپـــــور به خاطر روایتگری در علم
کِرْت وانهگت، نویسنده فقید آمریکایی، معتقد بود که تمام داستانها را میتوان بر اساس شکل روایی و قوس داستانی آنها به دستههای انگشتشماری طبقهبندی کرد. این ادعا سالها بعد به صورت کمی راستیآزمایی شد. در این ارائه ابتدا ادبیات داستانپردازی محاسباتی را مرور میکنیم. سپس نشان میدهیم که سریالهای ترکی در سالهای گذشته عمدتا چه نوع قوس داستانی داشتهاند و کم و کیف موفقیتشان در گیشه چگونه بوده است.
📃 اسلایدها
🎙فایل صوتی
🎞 ویدیو در یوتیوب
----------------------------------------------
@sitpor | sitpor.org
instagram.com/sitpor_media
#سیتپـــــور به خاطر روایتگری در علم
👍6👎2
Forwarded from انجمن علمی فیزیک دانشگاه شیراز
🔻 انجمن علمی فیزیک دانشگاه شیراز برگزار میکند:
📌 چهارمین مدرسه زمستانی فیزیک آماری و سامانههای پیچیده
🎙 باحضور:
دکتر افشین منتخب
دکتر فرهاد شهبازی
دکتر محسن قاسمینژاد
دکتر ابوالفضل رمضانپور
زمان برگزاری: پنج شنبه ۱۷ اسفندماه
ساعت ۹ الی ۱۷:۳۰
📍 محل برگزاری: سالن کنفرانس بخش فیزیک
🔊مخاطبان: دانشجویان، اساتید و فارغ التحصیلان رشتههای ریاضی، فیزیک، علوم کامپیوتر و رشته های مرتبط و دیگر علاقهمندان.
❗️ به همراه پذیرایی و ناهار
⭕️ علاقهمندان محترم جهت کسب اطلاعات بیشتر و ثبتنام، میتوانند کد درج شده در پوستر را اسکن، و یا از طریق لینک زیر اطلاعات لازم را دریافت کنند:
https://evnd.co/EsEAw
@ShirazUPhysics 💡
📌 چهارمین مدرسه زمستانی فیزیک آماری و سامانههای پیچیده
🎙 باحضور:
دکتر افشین منتخب
دکتر فرهاد شهبازی
دکتر محسن قاسمینژاد
دکتر ابوالفضل رمضانپور
زمان برگزاری: پنج شنبه ۱۷ اسفندماه
ساعت ۹ الی ۱۷:۳۰
📍 محل برگزاری: سالن کنفرانس بخش فیزیک
🔊مخاطبان: دانشجویان، اساتید و فارغ التحصیلان رشتههای ریاضی، فیزیک، علوم کامپیوتر و رشته های مرتبط و دیگر علاقهمندان.
❗️ به همراه پذیرایی و ناهار
⭕️ علاقهمندان محترم جهت کسب اطلاعات بیشتر و ثبتنام، میتوانند کد درج شده در پوستر را اسکن، و یا از طریق لینک زیر اطلاعات لازم را دریافت کنند:
https://evnd.co/EsEAw
@ShirazUPhysics 💡
#PhD Scholarship in Network Science
https://www.jobs.ac.uk/job/DGH718/northeastern-university-london-fully-funded-phd-scholarship-network-and-data-science-to-model-the-behaviour-of-complex-systems-of-human-and-non-human-social-animals
Deadline: 1 April 2024
Start date: 1 October 2024
https://www.jobs.ac.uk/job/DGH718/northeastern-university-london-fully-funded-phd-scholarship-network-and-data-science-to-model-the-behaviour-of-complex-systems-of-human-and-non-human-social-animals
Deadline: 1 April 2024
Start date: 1 October 2024
www.jobs.ac.uk
jobs.ac.uk - Search
jobs.ac.uk - Search 1000's of science, research and academic related vacancies in the UK and abroad. Updated daily, easy to use job search and a free Jobs by Email service.
👍1
Summer School:
Mathematical Methods in Computational Neuroscience
8 July - 26 July 2024, Fred Kavli Knowledge Center, Eresfjord, Norway
https://www.compneuronrsn.org/
Mathematical Methods in Computational Neuroscience
8 July - 26 July 2024, Fred Kavli Knowledge Center, Eresfjord, Norway
https://www.compneuronrsn.org/
Mathematical Methods
Mathematical Methods in Computational Neuroscience
Summer school in Eresfjord, Norway (July 8th - 26th, 2024)
👍6
A #PhD project is available as part of a NEXUS grant from the Institute ExposUM of the University of Montpellier, France.
The PhD project "Preparing the critical care system for future health crises" will be co-supervised by Mircea T. Sofonea, Jean-Yves Lefrant (both at University of Montpellier & Nîmes University Hospital) and by Rémi Choquet (CEFE, Montpellier).
https://evolepid.cefe.cnrs.fr/nexus/EMIPSA_NEXUS2024_Sujet4_EN.pdf
The PhD project "Preparing the critical care system for future health crises" will be co-supervised by Mircea T. Sofonea, Jean-Yves Lefrant (both at University of Montpellier & Nîmes University Hospital) and by Rémi Choquet (CEFE, Montpellier).
https://evolepid.cefe.cnrs.fr/nexus/EMIPSA_NEXUS2024_Sujet4_EN.pdf
Geoffrey West | Johns Hopkins Natural Philosophy Forum Distinguished Lecture, 2024
https://www.youtube.com/watch?v=pjJFzZpBN2c
https://www.youtube.com/watch?v=pjJFzZpBN2c
YouTube
Geoffrey West | Johns Hopkins Natural Philosophy Forum Distinguished Lecture, 2024
The Johns Hopkins Natural Philosophy Forum sponsors an annual Distinguished Lecture, to be given by a scientist or philosopher working on illuminating the fundamental structure of reality. The 2023-24 lecture was given on February 27, 2024, by Geoffrey West…
👍4
2-year #postdoc opening in our project "Learning the meso-scale organization of complex networks"
https://usyd.wd3.myworkdayjobs.com/USYD_EXTERNAL_CAREER_SITE/job/Camperdown-Campus/Postdoctoral-research-associate_0116091-1
https://usyd.wd3.myworkdayjobs.com/USYD_EXTERNAL_CAREER_SITE/job/Camperdown-Campus/Postdoctoral-research-associate_0116091-1
👍2
Wastewater-based Epidemiology for COVID-19 Surveillance: A Survey
https://arxiv.org/abs/2403.15291
The pandemic of COVID-19 has imposed tremendous pressure on public health systems and social economic ecosystems over the past years. To alleviate its social impact, it is important to proactively track the prevalence of COVID-19 within communities. The traditional way to estimate the disease prevalence is to estimate from reported clinical test data or surveys. However, the coverage of clinical tests is often limited and the tests can be labor-intensive, requires reliable and timely results, and consistent diagnostic and reporting criteria. Recent studies revealed that patients who are diagnosed with COVID-19 often undergo fecal shedding of SARS-CoV-2 virus into wastewater, which makes wastewater-based epidemiology (WBE) for COVID-19 surveillance a promising approach to complement traditional clinical testing. In this paper, we survey the existing literature regarding WBE for COVID-19 surveillance and summarize the current advances in the area. Specifically, we have covered the key aspects of wastewater sampling, sample testing, and presented a comprehensive and organized summary of wastewater data analytical methods. Finally, we provide the open challenges on current wastewater-based COVID-19 surveillance studies, aiming to encourage new ideas to advance the development of effective wastewater-based surveillance systems for general infectious diseases.
https://arxiv.org/abs/2403.15291
The pandemic of COVID-19 has imposed tremendous pressure on public health systems and social economic ecosystems over the past years. To alleviate its social impact, it is important to proactively track the prevalence of COVID-19 within communities. The traditional way to estimate the disease prevalence is to estimate from reported clinical test data or surveys. However, the coverage of clinical tests is often limited and the tests can be labor-intensive, requires reliable and timely results, and consistent diagnostic and reporting criteria. Recent studies revealed that patients who are diagnosed with COVID-19 often undergo fecal shedding of SARS-CoV-2 virus into wastewater, which makes wastewater-based epidemiology (WBE) for COVID-19 surveillance a promising approach to complement traditional clinical testing. In this paper, we survey the existing literature regarding WBE for COVID-19 surveillance and summarize the current advances in the area. Specifically, we have covered the key aspects of wastewater sampling, sample testing, and presented a comprehensive and organized summary of wastewater data analytical methods. Finally, we provide the open challenges on current wastewater-based COVID-19 surveillance studies, aiming to encourage new ideas to advance the development of effective wastewater-based surveillance systems for general infectious diseases.
arXiv.org
Wastewater-based Epidemiology for COVID-19 Surveillance and...
The pandemic of COVID-19 has imposed tremendous pressure on public health systems and social economic ecosystems over the past years. To alleviate its social impact, it is important to proactively...
Forwarded from Sitpor.org سیتپـــــور
Media is too big
VIEW IN TELEGRAM
علم شبکه و مدلسازی پخش بیماری در حضور مداخلهها
در دو دهه گذشته، مدلسازی پخش بیماریهای عفونی در جوامع به کمک ابزارهای فیزیک آماری و علم شبکه گسترش فراوانی داشته. در این ارائه، به اثرات ویژگیهای شبکههای اجتماعی بر اثربخشی مداخلههای دارویی و غیر دارویی همچون واکسیناسیون و رهگیری تماس میپردازیم. به طور خاص نشان میدهیم ویژگیهایی مانند ناهمگنیهای ارتباطی، هوموفیلی رفتاری، اندازه گروههای اجتماعی و تحولات زمانی شبکهها چگونه میتوانند در بهبودبخشی اثرات مداخلهها نقش داشته باشند.
📃 اسلایدها
🎧 فایل صوتی
🎞 ویدیو در یوتیوب
🔗 جزئیات بیشتر:
https://www.sitpor.org/2024/03/spreading_epidemic_interventions/
----------------------------------------------
@sitpor | sitpor.org
instagram.com/sitpor_media
#سیتپـــــور به خاطر روایتگری در علم
در دو دهه گذشته، مدلسازی پخش بیماریهای عفونی در جوامع به کمک ابزارهای فیزیک آماری و علم شبکه گسترش فراوانی داشته. در این ارائه، به اثرات ویژگیهای شبکههای اجتماعی بر اثربخشی مداخلههای دارویی و غیر دارویی همچون واکسیناسیون و رهگیری تماس میپردازیم. به طور خاص نشان میدهیم ویژگیهایی مانند ناهمگنیهای ارتباطی، هوموفیلی رفتاری، اندازه گروههای اجتماعی و تحولات زمانی شبکهها چگونه میتوانند در بهبودبخشی اثرات مداخلهها نقش داشته باشند.
📃 اسلایدها
🎧 فایل صوتی
🎞 ویدیو در یوتیوب
🔗 جزئیات بیشتر:
https://www.sitpor.org/2024/03/spreading_epidemic_interventions/
----------------------------------------------
@sitpor | sitpor.org
instagram.com/sitpor_media
#سیتپـــــور به خاطر روایتگری در علم
👍1
Debates on the nature of artificial general intelligence | Science
https://www.science.org/doi/10.1126/science.ado7069
https://www.science.org/doi/10.1126/science.ado7069
Science
Debates on the nature of artificial general intelligence
The term “artificial general intelligence” (AGI) has become ubiquitous in current discourse around AI. OpenAI states that its mission is “to ensure that artificial general intelligence benefits all of humanity.” DeepMind’s company vision statement notes ...
CENTAI offers 2 three-year pre-doctoral contracts funded by CEDAR, an EU-funded research project. Successful applicants can enroll in a PhD program and conduct research in complex systems and artificial intelligence domains. More info: centai.eu/careers/cedar
👍1
How Is Flocking Like Computing?
Birds flock. Locusts swarm. Fish school. From chaotic assemblies of life, order somehow emerges. In this episode, co-host Steven Strogatz interviews the evolutionary ecologist Iain Couzin about how and why collective behaviors arise.
https://www.quantamagazine.org/how-is-flocking-like-computing-20240328/
Birds flock. Locusts swarm. Fish school. From chaotic assemblies of life, order somehow emerges. In this episode, co-host Steven Strogatz interviews the evolutionary ecologist Iain Couzin about how and why collective behaviors arise.
https://www.quantamagazine.org/how-is-flocking-like-computing-20240328/
Quanta Magazine
How Is Flocking Like Computing?
Birds flock. Locusts swarm. Fish school. From chaotic assemblies of life, order somehow emerges. In this episode, co-host Steven Strogatz interviews the evolutionary ecologist Iain Couzin about how and why collective behaviors arise.
👍8
Interested in network dynamical systems with higher-order interactions? Apply for a #PhD
https://workingat.vu.nl/vacancies/beyondtheedge-phd-position-in-network-dynamical-systems-amsterdam-1059512
https://workingat.vu.nl/vacancies/beyondtheedge-phd-position-in-network-dynamical-systems-amsterdam-1059512
workingat.vu.nl
Vacancy — BeyondTheEdge PhD Position in Network Dynamical Systems
Do you have an inquisitive mind and a passion for mathematics and statistics? Please apply for a PhD position at Vrije Universiteit Amsterdam.
#phd Machine learning the dynamics of force-sensing proteins
https://www.findaphd.com/phds/project/machine-learning-the-dynamics-of-force-sensing-proteins/?p170724
https://www.findaphd.com/phds/project/machine-learning-the-dynamics-of-force-sensing-proteins/?p170724
www.FindAPhD.com
Machine learning the dynamics of force-sensing proteins at King’s College London on FindAPhD.com
PhD Project - Machine learning the dynamics of force-sensing proteins at King’s College London, listed on FindAPhD.com
#Postdoc Fellowship on Society as a Complex System: Polarization, Segregation and Inequality
https://vacatures.uva.nl/UvA/job/Postdoctoral-Fellowship-on-Society-as-a-Complex-System-Polarization%2C-Segregation-and-Inequality/791948602/
https://vacatures.uva.nl/UvA/job/Postdoctoral-Fellowship-on-Society-as-a-Complex-System-Polarization%2C-Segregation-and-Inequality/791948602/
On the Shape of Epidemics
Abstract
The SARS-CoV-2 pandemic upended our societies and re-shaped the way we go about our day-to-day lives—from how we work and interact to the way we buy groceries and attend school. In this talk, I will present a series of studies quantifying how our behavior, mobility patterns, and social networks shaped and were shaped by COVID-19. Leveraging global data sets that represent billions of people, I will show how myriad factors interacted to structure the course of the pandemic. Then, by connecting the mathematics of epidemics to classical theory from ecology, I will outline a strategy for preventing future outbreaks from growing into pandemics. Finally, using the lessons learned from COVID-19, I discuss how we might balance the ethical and privacy considerations around high-resolution data with their critical role in responding to epidemics.
About the Speaker
Samuel V. Scarpino, PhD, is the director of AI + life sciences at Northeastern University and a professor of the practice in health and computer sciences. He holds appointments in Northeastern’s Institute for Experiential AI and Network Science Institute. In recognition for his contributions to complex systems science, he was named a fellow of the ISI Foundation in 2017, an external professor at the Santa Fe Institute in 2020, and an external faculty member at the Vermont Complex System Center in 2021. Prior to joining Northeastern, Scarpino was the vice president of pathogen surveillance at The Rockefeller Foundation, chief strategy officer at Dharma Platform (a social impact, technology startup), and co-founded a data science initiative called Global.health, which was backed by Google and The Rockefeller Foundation. Scarpino’s research has been published in journals such as Nature, Science, The Lancet Global Health, Nature Medicine, PNAS, Clinical Infectious Diseases, and Nature Physics. The New York Times, Wired, the Boston Globe, National Geographic, and numerous other venues have covered his work. He earned his doctoral degree from The University of Texas at Austin in 2013 and was Santa Fe Institute Omidyar Fellow from 2013 – 2016.
Register here: https://iu.zoom.us/webinar/register/WN_kj-cg_saTmi4oQERGNX8Lg#/registration
Abstract
The SARS-CoV-2 pandemic upended our societies and re-shaped the way we go about our day-to-day lives—from how we work and interact to the way we buy groceries and attend school. In this talk, I will present a series of studies quantifying how our behavior, mobility patterns, and social networks shaped and were shaped by COVID-19. Leveraging global data sets that represent billions of people, I will show how myriad factors interacted to structure the course of the pandemic. Then, by connecting the mathematics of epidemics to classical theory from ecology, I will outline a strategy for preventing future outbreaks from growing into pandemics. Finally, using the lessons learned from COVID-19, I discuss how we might balance the ethical and privacy considerations around high-resolution data with their critical role in responding to epidemics.
About the Speaker
Samuel V. Scarpino, PhD, is the director of AI + life sciences at Northeastern University and a professor of the practice in health and computer sciences. He holds appointments in Northeastern’s Institute for Experiential AI and Network Science Institute. In recognition for his contributions to complex systems science, he was named a fellow of the ISI Foundation in 2017, an external professor at the Santa Fe Institute in 2020, and an external faculty member at the Vermont Complex System Center in 2021. Prior to joining Northeastern, Scarpino was the vice president of pathogen surveillance at The Rockefeller Foundation, chief strategy officer at Dharma Platform (a social impact, technology startup), and co-founded a data science initiative called Global.health, which was backed by Google and The Rockefeller Foundation. Scarpino’s research has been published in journals such as Nature, Science, The Lancet Global Health, Nature Medicine, PNAS, Clinical Infectious Diseases, and Nature Physics. The New York Times, Wired, the Boston Globe, National Geographic, and numerous other venues have covered his work. He earned his doctoral degree from The University of Texas at Austin in 2013 and was Santa Fe Institute Omidyar Fellow from 2013 – 2016.
Register here: https://iu.zoom.us/webinar/register/WN_kj-cg_saTmi4oQERGNX8Lg#/registration
Zoom
Video Conferencing, Web Conferencing, Webinars, Screen Sharing
Zoom is the leader in modern enterprise video communications, with an easy, reliable cloud platform for video and audio conferencing, chat, and webinars across mobile, desktop, and room systems. Zoom Rooms is the original software-based conference room solution…
👍1