Telegram Web
🔥 Интересный кейс про ML в картографии

В статье рассказано про развитие детектора Яндекс Карт для распознавания дорожных знаков на панорамах — от бинарного классификатора до нейросетей. Сейчас детектор умеет находить почти все знаки в России. Первая же версия создавалась в 2016 году с помощью небольшого датасета и модели на классических подходах компьютерного зрения. Использовали ACFFeatures + WaldBoost с бинарными решающими деревьями.

Классические методы страдали «близорукостью» — детектили знаки только «в лоб», повороты пропускали, поэтому перешли к новой версии на свёрточных нейросетях и натренировали Faster R-CNN.

Нетривиальные архитектурные решения:
▪️Объединили все знаки ограничения скорости в один класс + дополнительная сеть для распознавания чисел на вырезанном знаке
▪️ То же с направлениями по полосам — детектор находит знак, дополнительная модель выдаёт бинарный вектор направлений
▪️ Создали отдельную модель для обработки найденных знаков многополосности. Полная техническая реализация описана в статье.

🟢 Главная проблема — сбор датасета

Как обычно, всё упёрлось в данные для обучения. Терабайты фотографий улиц прогонять через асессоров — дорого и неэффективно. Выстроили такой процесс: сначала автоматически находить фотографии, где есть дорожные знаки, и только потом отправлять их на разметку асессорам.

🟢 Финальные цифры:
▪️ 300 тысяч фотографий в датасете
▪️ 1,5 миллиона размеченных знаков
▪️200+ поддерживаемых классов знаков

Любопытный факт: самый частый знак в датасете — пешеходный переход.

Практический результат: всё это помогает автоматически обновлять данные в Картах, по которым сервис строит маршруты, выдаёт голосовые подсказки о том, с какой скоростью ехать и тд. В год так вносится более 200 тысяч автообновлений

⚡️ Статья: https://habr.com/ru/companies/yandex/articles/946338/

@ai_machinelearning_big_data

#ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍296🔥231200👏87🥰56😁53🤔22🤣9🤩7👌5❤‍🔥1
Media is too big
VIEW IN TELEGRAM
GigaChat Vision Team — ваша будущая команда! 😉

Если вы зарегистрируетесь на One Day Offer для NLP- и CV-инженеров и пройдёте все этапы отбора, то уже совсем скоро будете:

✔️ Обучать Vision, 3D/CAD и омни-модальные модели на тысячах A100/H100.
✔️ Создавать live-ассистента на edge-устройствах, а также базовые модели VLA для промышленных проектов: автоматизированных фабрик, автопилотов и роботов.
✔️ Работать с документами: Document Intelligence и разработка VLM OCR.
✔️ Развивать мультимодальную инфраструктуру: от инференса генеративных моделей до создания и авторазметки синтетических данных

Дублируем ссылку на регистрацию — до встречи 4 октября!
🔥139🤩27🎉21👍8👏8🤣73🕊3😍2🌭1💘1
🧠 Google/DeepMind представили AlphaEvolve: ИИ, который помогает математикам и компьютерным теоретикам искать новые результаты.

💡 Как он работает
Обычно LLM стараются писать доказательства целиком, но это слишком сложно и ненадёжно.

AlphaEvolve идёт другим путём: он не пишет доказательства сам, а генерирует новые маленькие элементы *конструкции (gadgets)*.

Эти кусочки можно быстро проверить автоматикой, и если они работают, их можно собрать в более крупные теоремы.

📈 Что удалось найти
- Новый результат для задачи MAX-4-CUT (Это задача из теории алгоритмов и комбинаторной оптимизации, разновидность классической задачи MAX-CUT), с конструкцией, которую раньше никто не придумывал.
- Сильные новые нижние границы для задач на случайных графах, включая работу с Ramanujan graphs.
- Проверка теорем стала в 10 000 раз быстрее, чем в обычных методах.

🧩 Зачем это нужно
- Математика требует 100% точности - и тут AI помогает именно как генератор идей, а проверка остаётся строгой и надёжной.
- Такой подход экономит годы человеческой работы и открывает дорогу к новым теоремам и алгоритмам.

📄 Подробнее: research.google/blog/ai-as-a-research-partner-advancing-theoretical-computer-science-with-alphaevolve/

@ai_machinelearning_big_data


#AI #Math #DeepMind #Research
👍283👏130🔥49🤓24😁21🎉16🤩16😢14👌13🤔11🥰4
✔️ Илон Маск стал первым человеком в истории, чьё состояние превысило $500 млрд

Для сравнения: это больше, чем суммарное богатство Джеффа Безоса ($233,5 млрд) и Марка Цукерберга ($245,7 млрд).

Только за последний год Маск увеличил своё состояние на $245 млрд.

✔️ Стартап Миры Мурати Thinking Machines представил свой первый продукт - Tinker.
Но это не новая модель, а гораздо более практичный инструмент: API для файнтюнинга.

Идея проста: вы пишете код для дообучения, а все заботы о железе берут на себя Thinking Machines - от распределения ресурсов до восстановления после сбоев.

Tinker поддерживает широкий спектр моделей - от небольших до очень крупных. В API доступны базовые примитивы (forward_backward, optim_step, sample), из которых можно собрать кастомные пайплайны. А для тех, кто хочет сразу сложные сценарии, есть Tinker Cookbook - библиотека с готовыми реализациями популярных алгоритмов: RLHF, Multi-Agent, Tool Use, Math Reasoning и других.

Пока продукт доступен только в приватной бете, но уже можно записаться в вейтлист.

✔️ Nvidia представила Reinforcement Learning Pretraining (RLP) - новый способ обучения ИИ, при котором модель учится рассуждать ещё на этапе претренинга.

В эксперименте на 12B модели RLP повысил точность на 35%, используя всего 0,125% данных.

Главное отличие: вместо обычного предсказания следующего токена модель сначала генерирует «мысль», а затем проверяет, улучшает ли она прогноз. За полезные мысли модель получает вознаграждение, что формирует навык пошагового мышления с самого начала обучения.

На математических и бенчмарках тестах RLP превзошёл стандартные подходы и сохранил преимущество даже после классического дообучения.
nvidia

✔️ Вышла версия Cursor 1.7. Теперь пользоваться инструментом стало удобнее за счёт ряда новых функций.

Подсказки появляются прямо во время ввода промпта и принимаются нажатием Tab. Появились кастомные hooks, которые позволяют управлять жизненным циклом агентов, а также deeplinks для быстрого обмена промптами.

Правила можно назначать сразу для всей команды, включая Bugbot для автоматического кодревью. Кроме того, теперь статус агентов доступен прямо из панели, без необходимости открывать само приложение.
cursor

✔️ Мира Мурати привлекла рекордные $2 млрд при оценке $10–12 млрд - крупнейший посевной раунд в истории США.

Она сохранила полный контроль над стартапом, а среди инвесторов - a16z, Accel, Nvidia, AMD и Cisco. В команду вошёл сооснователь OpenAI Джон Шульман и группа экс-исследователей.

Компания зарегистрирована как public benefit corporation, обещает open-source и первый продукт в ближайшие месяцы.
Information

✔️ OpenAI стала самой дорогой частной компанией в мире - её оценка достигла $500 млрд, обогнав SpaceX и ByteDance.

За последние полгода стоимость выросла на $200 млрд. При этом стартап продолжает наращивать убытки, но инвесторы пока закрывают на это глаза.

Сэм Альтман фактически переигрывает весь рынок, превращая OpenAI в главного игрока индустрии.
Bloomberg

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
54🔥24👍10🤣5🌚2😐2😨2💘2
🔦 Генерация изображений на свете, а не на GPU

Исследователи из UCLA представили оптическую генеративную модель (Optical Generative Model).
Она использует свет и линзы вместо вычислительных блоков - то есть картинки рождаются не на чипах, а в физике.

🔬 Как это работает:

1. Лёгкий цифровой энкодер превращает случайный шум в фазовый узор.
2. Этот узор загружается на оптический модулятор света.
3. Свет проходит через дифракционный декодер и прямо на сенсоре формируется изображение.

✔️ Авторами проведены реальные эксперименты: с помощью видимого света и SLM показаны результаты генерации:
- Созданы цифры, лица, бабочки и даже картины в стиле Ван Гога.
- Качество сравнимо с современными диффузионными моделями.
- Есть две версии: мгновенная (один проход) и итеративная (несколько шагов, как у диффузии).

Чем интересен такой подход
- Подход не требует никакой вычислительной нагрузки.
- Супербыстрая генерация: физика света выполняет то, что GPU делает миллиардами операций.
- Это открывает путь к энергоэффективному ИИ для edge-устройств: AR/VR, мобильные камеры, компактные сенсоры.

⚠️ Ограничения:
- Сложно выравнивать оптические системы.
- Ограничения по точности фазовых масок.
- Зависимость от качества оборудования (шум, битовая глубина).

Но даже с этими проблемами, это первый шаг к новому классу ИИ, где вычисления заменяются чистой оптикой.

Nature: https://www.nature.com/articles/s41586-025-09446-5

@ai_machinelearning_big_data


#AI #OpticalComputing #Photonics #GenerativeA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥9725👍16🤔8😨7🤨2🫡2😍1💘1
✔️ IBM представила Granite 4.0 — новое семейство open-weights языковых моделей от 3B до 32B параметров.

Четыре новые модели:
- Granite 4.0 H Small - 32B/9B активных параметров
- Granite 4.0 H Tiny - 7B/1B
- Granite 4.0 H Micro - 3B/3B
- Granite 4.0 Micro - 3B/3B

Benchmarking (Artificial Analysis Index):
- Granite 4.0 H Small: 23 балла (на 8 выше Granite 3.3 8B), обходит Gemma 3 27B (22), но уступает Mistral Small 3.2 (29) и Qwen3 30B A3B (37).
- Granite 4.0 Micro: 16 баллов, выше Gemma 3 4B (15) и LFM 2 2.6B (12).

Token efficiency:
- Granite 4.0 Small — 5.2M токенов
- Granite 4.0 Micro — 6.7M токенов

Обе модели заметно эффективнее Granite 3.3 8B и большинства non-reasoning моделей <40B.

Детали:
- Контекст: до 128K токенов
- Лицензия: Apache 2.0
- Granite 4.0 H Small доступна на Replicate по $0.06 / $0.25 за 1M input/output токенов
- Все модели доступны на Hugging Face
- Модель Micro (3.4B) можно запускать полностью локально.

🔗 Hugging Face: https://huggingface.co/collections/unsloth/granite-40-68ddf64b4a8717dc22a9322d
🔗 Unsloth: https://docs.unsloth.ai/new/ibm-granite-4.0

@ai_machinelearning_big_data


#AI #IBM #Granite4 #LLM #OpenWeights
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥56👏23👍1614🥰3💘2
✔️ Прорыв в квантовых вычислениях

Физики Гарварда создали первый в мире квантовый компьютер, который работает непрерывно без перезапуска.

Ранее квантовые машины держались миллисекунды, максимум - около 13 секунд.
Новая установка работает более 2 часов и может функционировать бесконечно.

Ключевое новшество - решение проблемы потери атомов: система в реальном времени пополняет кубиты, впрыскивая 300 000 атомов в секунду с помощью оптических инструментов.

Учёные считают, что практические, постоянно работающие квантовые компьютеры могут появиться уже в течение 2 лет - с огромным влиянием на медицину, финансы и научные исследования.
thecrimson

✔️ Anthropic делает ставку на AI-приложения для бизнеса

По данным The Information, Anthropic продвигает свою модель Claude как основу для создания enterprise-замен привычных приложений вроде Slack. Компания делает ставку на обучение с подкреплением, чтобы улучшить способности модели к программированию.

Похожую стратегию развивает и xAI Илона Маска, но эксперты сомневаются, что крупные корпорации откажутся от укоренившихся систем вроде SAP или ServiceNow. Более вероятно, что первыми такие AI-first инструменты начнут использовать небольшие стартапы.

Тем временем JPMorgan и другие банки активно заявляют об интеграции решений OpenAI, Anthropic и Google, хотя реальные масштабы затрат пока не соответствуют публичному энтузиазму.
theinformation

✔️ Perplexity объявила, что её AI-браузер Comet, ранее доступный только по подписке $200/месяц, теперь стал бесплатным для всех (с ограничениями по запросам).

Comet, запущенный в июле 2025 года, работает как встроенный ассистент: он умеет анализировать страницы, вытаскивать ключевые детали и серфить по ссылкам, проводя многошаговые исследования.

Perplexity также представила Comet Plus за $5 — партнёрскую подписку, которая открывает доступ к контенту от CNN, The Washington Post, Fortune, Los Angeles Times и Condé Nast (The New Yorker, Wired и др.).

Однако запуск совпал с продолжающимися исками от крупных издателей, включая Dow Jones (The Wall Street Journal) и New York Post, обвиняющих стартап в использовании их материалов для обучения ИИ.
Скачать Comet

✔️ OpenAI раскалывает запуск Sora: ИИ-видео как TikTok, но сотрудники бьют тревогу

TechCrunch пишет, что запуск нового соцприложения Sora 2 вызвал тревогу внутри самой OpenAI. Это TikTok-подобная лента, наполненная видео, созданными ИИ, включая дипфейки самого Сэма Альтмана.

Часть исследователей OpenAI считает, что компания уходит от своей миссии ради хайпового контента. Один из сотрудников прямо заявил: «AI-ленты - пугающие. Я был шокирован, узнав, что мы выпускаем Sora 2…»

Сторонники проекта объясняют, что такие продукты нужны, чтобы финансировать фундаментальные исследования и дать пользователям почувствовать силу технологий. В OpenAI утверждают, что хотят «показать людям что-то классное, чтобы они улыбнулись».

Но вместе с ростом Sora OpenAI рискует повторить судьбу классических соцсетей: зависимость, манипуляции c информацией, проблемы с дипфейками и давлением на метрики вовлечённости.
techcrunch

✔️ США продолжают контролировать большинство мировых мощностей для обучения ИИ, строя самые большие и энергоемкие кластеры

Китай в 2025 году вложит до 98 млрд долларов, но экспортные ограничения на топовые чипы Nvidia и AMD тормозят прогресс.

Huawei продвигает Ascend 910C, однако по памяти, пропускной способности и софту он уступает решениям Nvidia. США разрешили ограниченные продажи H20 и MI308 в Китай с 15% налогом, но топовые GPU недоступны китацы, и разрыв в производительности всё ещё в пользу американцев.
X

@ai_machinelearning_big_data


#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8336🔥8❤‍🔥2😁2💘21🎉1
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Релиз Agent S3 - продвинутый агент для работы с компьютером, который приближается к человеческому уровню.

Вместо того, чтобы усложнять одну модель, авторы запускают несколько агентов параллельно и затем выбирают лучший результат.
Метод назвили **Behavior Best-of-N (bBoN).

Как работает:
- Каждый агент пробует решить задачу.
- Его действия переводятся в поведенческий нарратив - короткое описание, что реально изменилось на экране.
- Специальный судья сравнивает эти нарративы и выбирает лучший.

Результаты:
- GPT-5 с 10 параллельными агентами → 69.9% успеха
- Для примера у GPT-5 Mini → 60.2%
- Agent S3* набирает на +10% выше предыдущей SOTA

📄 Paper: http://arxiv.org/abs/2510.02250
💻 Code: http://github.com/simular-ai/Agent-S
📝 Blog: http://simular.ai/articles/agent-s3

@ai_machinelearning_big_data


#AI #Agents #AgentS3 #OSWorld #SimularAI #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥48👍1813💘2
✔️ Ming-UniAudio - универсальный инструмент для работы с речью.

Модель объединяет понимание, генерацию и редактирование аудио без привязки к таймстампам. Основой стал новый токенайзер MingTok-Audio, на котором построен единый Speech LLM. Одновременно выпущен бенчмарк для свободного редактирования речи.
GitHub / Tokenizer / Model / Benchmark

✔️ Свежий бесплатный курс по нейросетям от Эндрю Ына и Стэнфорда

Основатель Coursera Эндрю Ын выпустил бесплатный курс по нейросетям.

В курсе: базовые основы Deep Learning, практические задания и советы по построению карьеры в AI.

Первая лекция уже доступна, все материалы и расписание — открыты. Отличный шанс провести выходные с пользой и глубже разобраться в мире нейросетей.
Первая лекция / Расписание

✔️ AI-инфраструктура тянет экономику США: 40% роста ВВП и триллионы инвестиций впереди

Почти 40% роста ВВП США за последний квартал обеспечили капитальные вложения в технологии, главным образом связанные с AI.

UBS прогнозирует, что расходы компаний на AI-инфраструктуру достигнут $375 млрд в 2025 году и вырастут до $500 млрд в 2026-м. Но основной рост идёт не от самого AI, а от строительства «фабрик мощности» - дата-центров и инфраструктуры. По оценке Brookfield Asset Management, за ближайшие 10 лет в эту сферу уйдёт $7 трлн.

По данным Минторга США, инвестиции в софт и компьютерное оборудование (без учёта зданий дата-центров) дали четверть всего экономического роста за квартал.

Этот всплеск трат меняет и фондовый рынок: как отмечает Deutsche Bank, индекс S&P 500 вырос на 13.81% с начала года, тогда как равновзвешенный вариант прибавил лишь 7.65%. То есть рост обеспечивают в основном «Великолепная семёрка» технологических гигантов.
X

✔️ Alpha School: в Техасе открылась школа, где учителей заменил ИИ

Дети 4–5 классов учатся два часа утром по индивидуальным программам в науке, математике и чтении, а после обеда занимаются проектами и жизненными навыками.

Учителей здесь называют «гидами» - они мотивируют, а не преподают, получая шестизначные зарплаты. Школа утверждает, что её ученики входят в топ-1% по тестам, хотя педагоги скептически относятся к роли ИИ.

Обучение стоит от $40 000 в год, но основатели считают модель примером будущего образования.
cbsnews

✔️ ИИ помог Теренсу Тао найти контрпример в математике

Один из величайших математиков современности, Теренс Тао, использовал искусственный интеллект, чтобы решить задачу на MathOverflow о последовательности наименьших общих кратных.

У него было теоретическое подозрение, что ответ отрицательный, но требовались конкретные числовые параметры для построения контрпримера. Сначала Тао просил ИИ сгенерировать Python-код для поиска, но из-за неверных параметров и долгого времени выполнения этот путь оказался неэффективным.

Затем он перешёл к пошаговому алгоритму: ИИ выполнял эвристические расчёты, помогая сузить диапазон параметров. В итоге удалось получить рабочие значения, которые Тао проверил самостоятельно с помощью короткого Python-скрипта, также созданного ИИ.

Такая стратегия позволила сэкономить часы ручного кодирования и отладки: ИИ не только ускорил поиск, но и выявил несколько ошибок в начальных рассуждениях. Этот случай показывает, как современные системы могут становиться реальными ассистентами даже в фундаментальной математике.
mathstodon

@ai_machinelearning_big_data


#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥5225👍13🌭1💘1
2025/10/04 14:47:19
Back to Top
HTML Embed Code: