Telegram Web
Forwarded from Яндекс
Media is too big
VIEW IN TELEGRAM
«Надо знать физику и интересоваться тем, как устроен мир». Кто такой робототехник, легко ли им стать и чем предстоит заниматься? Об этом в новом выпуске «1х1» рассказывают разработчики роботов: Алексей Захарченко из Автономного транспорта и Александр Петровский из Яндекс Роботикс.

↘️ Смотрите здесь, на YouTube и в VK Видео, а также откликайтесь на вакансии в командах Яндекс Роботикс и Автономного транспорта.

Подписывайтесь 🔴 @yandex
Please open Telegram to view this post
VIEW IN TELEGRAM
👨‍💻82👍2825👏11🤩7😁6🔥3🤔3
Google опубликовала 150-страничный отчёт о Health AI Agents - 7 000 аннотаций, 1 100+ часов экспертов.

Но главное - не метрики, а новая философия дизайна.

Вместо монолитного *«Doctor-GPT»*, Google создаёт Personal Health Agent (PHA) - систему из трёх специализированных агентов:
- Data Science Agent - анализирует носимые устройства и лабораторные данные
- Domain Expert Agent - проверяет медицинские факты и знания
- Health Coach Agent - ведёт диалог, ставит цели, добавляет эмпатию

🧩 Всё связывает оркестратор с памятью: цели, барьеры, инсайты пользователя.

Результаты
- Превзошёл базовые модели на 10 бенчмарках
- Пользователи предпочли PHA обычным LLM (20 участников, 50 персон)
- Эксперты оценили ответы на 5,7–39 % лучше при сложных медицинских запросах

⚙️ Дизайн-принципы
- Учитывать все потребности пользователя
- Адаптивно комбинировать агентов
- Не спрашивать данные, которые можно вывести
- Минимизировать задержку и сложность

🧠 Протестированные сценарии
- Общие вопросы о здоровье
- Интерпретация данных (носимые устройства, биомаркеры)
- Советы по сну, питанию, активности
- Оценка симптомов (без диагноза)

⚠️ Ограничения и будущее
- Медленнее одиночных агентов (244 с против 36 с)
- Нужны аудит предвзятости, защита данных и регуляторное соответствие
- Следующий шаг - адаптивный стиль общения: эмпатия ответственность

💡 Вывод
Google показывает путь вперёд: не «супердоктор-бот», а модульные, специализированные агентные команды.
Медицина — лишь первый тест. Дальше: финансы, право, образование, наука.

Google 150 Health AI Agents: https://arxiv.org/pdf/2508.20148

@vistehno
👍10737👏22🤔11🔥9🎉9👌3
Media is too big
VIEW IN TELEGRAM
🧠 Новый курс от Andrew Ng - Agentic AI!

Создание AI-агентов становится одной из самых востребованных профессий на рынке.
Теперь вы можете научиться этом на курсе.

Курс научит вас реализовывать четыре ключевых паттерна дизайна агентов:

- Reflection - как агент анализирует свои ответы и улучшает их
- Tool use - модель выбирает, какие инструменты использовать (поиск, почта, календарь, код и т.д.)
- **Planning**- ИИ планирует и разбивает задачу на подзадачи
- Multi-agent collaboration - взаимодействие нескольких агентов, как сотрудников в команде

Andrew Ng делает акцент на оценке (evals) и анализе ошибок - ключевых навыках для успешной отладки агентных систем.

В курсе есть практика, где можно создадите deep research-агента, который умеет искать, синтезировать и формировать отчёты, применяя все эти паттерны.

🟢Особенности курса:
- Все уроки и код на Python
- Очень подробно и пошагало объяснены все вунтренности
- В курсе рассматриваются для самые популярные фреймворками для создания ИИ агентнов

🟢Формат: self-paced (проходите курс в удобном для себя темпе)

Требование для учащихся - базовые знания Python

🟠 Записаться: https://deeplearning.ai/courses/agentic-ai/

@ai_machinelearning_big_data

#AI #AgenticAI #AndrewNg #DeepLearningAI #AIagents
Please open Telegram to view this post
VIEW IN TELEGRAM
🤩112👍4125👏15💯9🎉6🔥5🙏5😁2🤬1💘1
Media is too big
VIEW IN TELEGRAM
✔️ Ученый Google получил Нобелевскую премию по физике 2025

Мишель Деворе (Michel Devoret), главный научный сотрудник команды Google Quantum AI, стал лауреатом Нобелевской премии по физике 2025 года.

Он разделил награду с Джоном Мартинесом (бывшим сотрудником Google Quantum AI) и Джоном Кларком из Калифорнийского университета в Беркли.

Премия присуждена за исследования макроскопических квантовых эффектов, которые стали фундаментом для создания сверхпроводящих кубитов - ключевой технологии в квантовых компьютерах.

Для Google это исторический момент: теперь в числе сотрудников и выпускников компании уже пять лауреатов Нобелевской премии, включая Демиса Хассабиса и Джеффри Хинтона, отмеченных в 2024 году.
google

✔️ Oracle потеряла $100 млн на аренде GPU-чипов Nvidia Blackwell

По данным *The Information*, Oracle понесла убытки около $100 млн за прошлый квартал из-за аренды чипов Blackwell.
Маржа серверного проката составила всего около 16%.

Бизнес по аренде GPU оказывается сложным:
скорее всего, дело не в падении спроса, а в сильном давлении на маржу - клиенты активно торгуются и сбивают цены.
theinformation

✔️ Новая модель от Liquid AI: LFM2-8B-A1B - это первый MoE-вариант в линейке LFM2, оптимизированная для эйдж устройств.

Модель содержит 8.3 млрд параметров, из которых активно только 1.5 млрд на токен, что даёт качество уровня 3–4B плотных моделей, но при этом она быстрее Qwen3-1.7B.

Модель показала себя отлично на 16 банчмарках:
она обгоняет LFM2-2.6B и модели аналогичного размера, особенно в задачах математики, кода и творческого письма.
huggingface

✔️ Deloitte внедряет Claude от Anthropic для 470 000 сотрудников

Deloitte объявила о крупнейшем корпоративном внедрении AI в истории Anthropic - Claude теперь станет рабочим инструментом для 470 000 сотрудников по всему миру.

Компания создаёт отраслевые версии Claude для бухгалтеров и разработчиков, а также откроет Claude Center of Excellence и сертифицирует 15 000 специалистов. В фокусе - прозрачность и соответствие нормам, с опорой на фреймворк Trustworthy AI.

Любопытно, что накануне Deloitte признала, что использовала ИИ в официальном отчёте правительства Австралии, где оказались поддельные цитаты и ссылки, и согласилась вернуть часть контракта на $440 000.
TechCrunch

✔️ Neuralink и xAI объединили усилия: человек управляет роботизированной рукой силой мысли

Пациент Nick Wray стал первым, кто с помощью Neuralink PRIME BCI смог управлять роботизированной рукой напрямую с помощью мозга. Он рассказал, что впервые за многие годы смог сам надеть шляпу, разогреть еду и поесть без помощи.

В проекте участвует и xAI Илонa Маска: система Grok помогает Neuralink усиливать нейроинтерфейс — от преобразования мыслей в текст и ускоренной коммуникации до синтезированного голоса и долгосрочной цели — когнитивного соединения человека и ИИ на бинарном уровне.

Многие задаются вопросом: станет ли Grok 5 шагом к слиянию человеческого сознания и искусственного интеллекта?

Это одно из самых вдохновляющих достижений в истории нейротехнологий — шаг к возвращению физической независимости людям и, возможно, к новой эре взаимодействия человека и ИИ.
Видео

✔️ ElevenLabs представила Agent Workflows - визуальный редактор для построения ИИ-агентов

Компания ElevenLabs представила Agent Workflows - инструмент, который позволяет визуально проектировать логику диалогов и взаимодействие агентов на платформе Agents.

Теперь вместо громоздкого единого агента можно создавать Subagents - специализированных подзадачных агентов с собственными промптами, базами знаний и инструментами.

С помощью Workflows можно задавать, когда агент передаёт управление подагенту, а когда подключает человеческого оператора. Это делает систему более гибкой и безопасной.

Кроме того, Workflows обеспечивают надёжное подключение к корпоративным системам, управление бизнес-логикой и умную маршрутизацию диалогов, что помогает снизить затраты, задержки и повысить точность ответов.
elevenlabs

@ai_machinelearning_big_data


#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👏9329👍26🎉15🤔6🤩6🙏2🏆2💘1
🧩 Новая архитектура нейросетей от Samsung: Tiny Recursive Model (TRM) - обошла DeepSeek-R1, Gemini 2.5 Pro и o3-mini в задачах рассуждения ARC-AGI 1 и ARC-AGI 2.

✔️ Размер модели - всего 7 миллионов параметров и около 1000 обучающих примеров.

Это меньше в 10 000 раз, чем у современных LLM, но результат лучше.

Как работает TRM:

1️⃣ Черновой ответ: модель сразу формирует быстрый набросок решения, а не пишет его по словам.
2️⃣ Скрачпад: создаёт внутреннее пространство для логики и промежуточных рассуждений.
3️⃣ Самокритика: многократно (6 раз) проверяет свои рассуждения, уточняя и исправляя ошибки.
4️⃣ Переписывание: на основе улучшённой логики создаёт новую, более точную версию ответа.
5️⃣ Цикличность: повторяет процесс до 16 раз, пока не достигнет уверенного, логически цельного решения.

💡 Чем интересна модель:

- Меньше затрат на вычисления, а результат выше; высокая эффективность при низких издержках.
- Доказательство того, что собственная логика и архитектура могут быть сильнее простого размера модели. Можно коротко описать ее: «думай, прежде чем действовать».
- Мощные рассуждающие системы становятся доступными даже без огромных кластеров, модель можно запускать на ограниченных ресурсах.

Это не просто «компактаная LLM», это другой способ мышления: модель, которая действительно *думает, прежде чем говорить*.

🟠Статья: https://arxiv.org/abs/2510.04871v1
🟠Github: https://github.com/SamsungSAILMontreal/TinyRecursiveModels

@ai_machinelearning_big_data

#TinyRecursiveModels #TRM #DeepLearning #NeuralNetworks
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍218116🔥86👏66🤔61🎉58🥰54🤩18🤣7💯5🤷‍♂2
📘 На Stepik вышел курс — «ML-инженер: от первой модели до продакшена»

Хотите не просто натренировать модель в ноутбуке, а довести её до реального продукта? Этот курс — полный путь от основ до production.

• Математика и Python: линейная алгебра, статистика, NumPy, Pandas, визуализация (Matplotlib, Seaborn, Plotly)

• Классика ML: регрессия, KNN, деревья решений, Random Forest, SVM, Naive Bayes

• Ансамбли: XGBoost, LightGBM, CatBoost, подбор параметров (Optuna, Hyperopt), MLflow

• Deep Learning: PyTorch и TensorFlow/Keras, CNN, RNN/LSTM, Attention, Transfer Learning

• Работа с данными: парсинг (BeautifulSoup, Scrapy), SQL/API, feature engineering

• Продвинутые задачи: рекомендательные системы, временные ряды (ARIMA, Prophet), SHAP и LIME

• MLOps: FastAPI, Docker, деплой в облако, мониторинг моделей

• Подготовка к собеседованиям: технические вопросы, системный дизайн, SQL, портфолио

🎓 Сертификат — добавьте в резюме или LinkedIn

🚀 Скидка 25%, действует 48 часов

👉 Пройти курс на Stepik
🤩75👍31🥱2019🎉15👌9👏6😁3🔥2
🚀 Крутая новость в области термоядерной энергии

Учёные из MIT создали прорывную гибридную модель - сочетание искусственного интеллекта + физики, которая прогнозирует поведение плазмы в термоядерных реакторах и делает будущие функционирующие установки более надёжными.

🔥 Особо важный момент: модель умеет предсказывать, как ведёт себя сверхгорячая плазма во время остановки (выключения/снижения мощности), это один из самых опасных моментов работы реактора, когда могут происходить разрушительные возмущения.

В отличие от обычных ИИ-моделей, эта требует гораздо меньше тренировочных данных, но остаётся очень точной.

Учёные также разработали алгоритм, который превращает прогнозы модели в конкретные инструкции по управлению плазмой: например, как менять силу магнитов или температуру, чтобы плазма оставалась стабильной и безопасно “загасла”.

🟢 Новость: https://news.mit.edu/2025/new-prediction-model-could-improve-reliability-fusion-power-plants-1007

@ai_machinelearning_big_data

#mit #science
Please open Telegram to view this post
VIEW IN TELEGRAM
2🔥80👍46👏1513🎉12🤩10😨5🤬2💘1
✔️ Ling-1T - новая модель от inclusionAI с 1 триллионом параметров

Модель на 1 трлн, из них ≈ 50 млрд активны на токен (MoE-архитектура).

Она обучена на 20 трлн+ токенов, специально отобранных для задач логического мышления и рассуждений. Контекст: 128 000 токенов.

Построена на базе Evo-CoT (Evolutionary Chain of Thought) и Linguistics-Unit RL - нового метода обучения для масштабируемых рассуждений. При помощи Evo-CoT модель постепенно улучшает баланс между точностью рассуждений и вычислительной эффективностью. То есть с каждым шагом она пытается делать рассуждения «глубже», но не слишком дорого по ресурсам.

Моделька демонстрирует сильные результаты в задачах кода, математики, логики и фронтенд-генерации.

В архитектуре задействованы Mixture-of-Experts (1/32 активация), MTP слои и маршрутизация экспертов.

Ling-1T показывает, что огромные модели можно сделать не только мощными, но и экономичными.

https://huggingface.co/inclusionAI/Ling-1T

@ai_machinelearning_big_data

#Ling1T #AI #ML #OpenSource #Reasoning #TrillionScale #FP8
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍258🔥7360🤔60👏52💯34😁30🥰24😐10😢8🤩6
2025/10/08 22:17:07
Back to Top
HTML Embed Code: