Forwarded from Яндекс
Media is too big
VIEW IN TELEGRAM
Подписывайтесь
Please open Telegram to view this post
VIEW IN TELEGRAM
👨💻82👍28❤25👏11🤩7😁6🔥3🤔3
Forwarded from Искусственный интеллект. Высокие технологии
Google опубликовала 150-страничный отчёт о Health AI Agents - 7 000 аннотаций, 1 100+ часов экспертов.
Но главное - не метрики, а новая философия дизайна.
Вместо монолитного *«Doctor-GPT»*, Google создаёт Personal Health Agent (PHA) - систему из трёх специализированных агентов:
- Data Science Agent - анализирует носимые устройства и лабораторные данные
- Domain Expert Agent - проверяет медицинские факты и знания
- Health Coach Agent - ведёт диалог, ставит цели, добавляет эмпатию
🧩 Всё связывает оркестратор с памятью: цели, барьеры, инсайты пользователя.
⚡ Результаты
- Превзошёл базовые модели на 10 бенчмарках
- Пользователи предпочли PHA обычным LLM (20 участников, 50 персон)
- Эксперты оценили ответы на 5,7–39 % лучше при сложных медицинских запросах
⚙️ Дизайн-принципы
- Учитывать все потребности пользователя
- Адаптивно комбинировать агентов
- Не спрашивать данные, которые можно вывести
- Минимизировать задержку и сложность
🧠 Протестированные сценарии
- Общие вопросы о здоровье
- Интерпретация данных (носимые устройства, биомаркеры)
- Советы по сну, питанию, активности
- Оценка симптомов (без диагноза)
⚠️ Ограничения и будущее
- Медленнее одиночных агентов (244 с против 36 с)
- Нужны аудит предвзятости, защита данных и регуляторное соответствие
- Следующий шаг - адаптивный стиль общения: эмпатия ↔ ответственность
💡 Вывод
Google показывает путь вперёд: не «супердоктор-бот», а модульные, специализированные агентные команды.
Медицина — лишь первый тест. Дальше: финансы, право, образование, наука.
Google 150 Health AI Agents: https://arxiv.org/pdf/2508.20148
@vistehno
Но главное - не метрики, а новая философия дизайна.
Вместо монолитного *«Doctor-GPT»*, Google создаёт Personal Health Agent (PHA) - систему из трёх специализированных агентов:
- Data Science Agent - анализирует носимые устройства и лабораторные данные
- Domain Expert Agent - проверяет медицинские факты и знания
- Health Coach Agent - ведёт диалог, ставит цели, добавляет эмпатию
🧩 Всё связывает оркестратор с памятью: цели, барьеры, инсайты пользователя.
⚡ Результаты
- Превзошёл базовые модели на 10 бенчмарках
- Пользователи предпочли PHA обычным LLM (20 участников, 50 персон)
- Эксперты оценили ответы на 5,7–39 % лучше при сложных медицинских запросах
⚙️ Дизайн-принципы
- Учитывать все потребности пользователя
- Адаптивно комбинировать агентов
- Не спрашивать данные, которые можно вывести
- Минимизировать задержку и сложность
🧠 Протестированные сценарии
- Общие вопросы о здоровье
- Интерпретация данных (носимые устройства, биомаркеры)
- Советы по сну, питанию, активности
- Оценка симптомов (без диагноза)
⚠️ Ограничения и будущее
- Медленнее одиночных агентов (244 с против 36 с)
- Нужны аудит предвзятости, защита данных и регуляторное соответствие
- Следующий шаг - адаптивный стиль общения: эмпатия ↔ ответственность
💡 Вывод
Google показывает путь вперёд: не «супердоктор-бот», а модульные, специализированные агентные команды.
Медицина — лишь первый тест. Дальше: финансы, право, образование, наука.
Google 150 Health AI Agents: https://arxiv.org/pdf/2508.20148
@vistehno
👍107❤37👏22🤔11🔥9🎉9👌3
Media is too big
VIEW IN TELEGRAM
Создание AI-агентов становится одной из самых востребованных профессий на рынке.
Теперь вы можете научиться этом на курсе.
Курс научит вас реализовывать четыре ключевых паттерна дизайна агентов:
- Reflection - как агент анализирует свои ответы и улучшает их
- Tool use - модель выбирает, какие инструменты использовать (поиск, почта, календарь, код и т.д.)
- **Planning**- ИИ планирует и разбивает задачу на подзадачи
- Multi-agent collaboration - взаимодействие нескольких агентов, как сотрудников в команде
Andrew Ng делает акцент на оценке (evals) и анализе ошибок - ключевых навыках для успешной отладки агентных систем.
В курсе есть практика, где можно создадите deep research-агента, который умеет искать, синтезировать и формировать отчёты, применяя все эти паттерны.
- Все уроки и код на Python
- Очень подробно и пошагало объяснены все вунтренности
- В курсе рассматриваются для самые популярные фреймворками для создания ИИ агентнов
Требование для учащихся - базовые знания Python
@ai_machinelearning_big_data
#AI #AgenticAI #AndrewNg #DeepLearningAI #AIagents
Please open Telegram to view this post
VIEW IN TELEGRAM
🤩112👍41❤25👏15💯9🎉6🔥5🙏5😁2🤬1💘1
Media is too big
VIEW IN TELEGRAM
Мишель Деворе (Michel Devoret), главный научный сотрудник команды Google Quantum AI, стал лауреатом Нобелевской премии по физике 2025 года.
Он разделил награду с Джоном Мартинесом (бывшим сотрудником Google Quantum AI) и Джоном Кларком из Калифорнийского университета в Беркли.
Премия присуждена за исследования макроскопических квантовых эффектов, которые стали фундаментом для создания сверхпроводящих кубитов - ключевой технологии в квантовых компьютерах.
Для Google это исторический момент: теперь в числе сотрудников и выпускников компании уже пять лауреатов Нобелевской премии, включая Демиса Хассабиса и Джеффри Хинтона, отмеченных в 2024 году.
По данным *The Information*, Oracle понесла убытки около $100 млн за прошлый квартал из-за аренды чипов Blackwell.
Маржа серверного проката составила всего около 16%.
Бизнес по аренде GPU оказывается сложным:
скорее всего, дело не в падении спроса, а в сильном давлении на маржу - клиенты активно торгуются и сбивают цены.
theinformation
Модель содержит 8.3 млрд параметров, из которых активно только 1.5 млрд на токен, что даёт качество уровня 3–4B плотных моделей, но при этом она быстрее Qwen3-1.7B.
Модель показала себя отлично на 16 банчмарках:
она обгоняет LFM2-2.6B и модели аналогичного размера, особенно в задачах математики, кода и творческого письма.
huggingface
Deloitte объявила о крупнейшем корпоративном внедрении AI в истории Anthropic - Claude теперь станет рабочим инструментом для 470 000 сотрудников по всему миру.
Компания создаёт отраслевые версии Claude для бухгалтеров и разработчиков, а также откроет Claude Center of Excellence и сертифицирует 15 000 специалистов. В фокусе - прозрачность и соответствие нормам, с опорой на фреймворк Trustworthy AI.
Любопытно, что накануне Deloitte признала, что использовала ИИ в официальном отчёте правительства Австралии, где оказались поддельные цитаты и ссылки, и согласилась вернуть часть контракта на $440 000.
TechCrunch
Пациент Nick Wray стал первым, кто с помощью Neuralink PRIME BCI смог управлять роботизированной рукой напрямую с помощью мозга. Он рассказал, что впервые за многие годы смог сам надеть шляпу, разогреть еду и поесть без помощи.
В проекте участвует и xAI Илонa Маска: система Grok помогает Neuralink усиливать нейроинтерфейс — от преобразования мыслей в текст и ускоренной коммуникации до синтезированного голоса и долгосрочной цели — когнитивного соединения человека и ИИ на бинарном уровне.
Многие задаются вопросом: станет ли Grok 5 шагом к слиянию человеческого сознания и искусственного интеллекта?
Это одно из самых вдохновляющих достижений в истории нейротехнологий — шаг к возвращению физической независимости людям и, возможно, к новой эре взаимодействия человека и ИИ.
Видео
Компания ElevenLabs представила Agent Workflows - инструмент, который позволяет визуально проектировать логику диалогов и взаимодействие агентов на платформе Agents.
Теперь вместо громоздкого единого агента можно создавать Subagents - специализированных подзадачных агентов с собственными промптами, базами знаний и инструментами.
С помощью Workflows можно задавать, когда агент передаёт управление подагенту, а когда подключает человеческого оператора. Это делает систему более гибкой и безопасной.
Кроме того, Workflows обеспечивают надёжное подключение к корпоративным системам, управление бизнес-логикой и умную маршрутизацию диалогов, что помогает снизить затраты, задержки и повысить точность ответов.
elevenlabs
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👏93❤29👍26🎉15🤔6🤩6🙏2🏆2💘1
Это меньше в 10 000 раз, чем у современных LLM, но результат лучше.
Как работает TRM:
1️⃣ Черновой ответ: модель сразу формирует быстрый набросок решения, а не пишет его по словам.
2️⃣ Скрачпад: создаёт внутреннее пространство для логики и промежуточных рассуждений.
3️⃣ Самокритика: многократно (6 раз) проверяет свои рассуждения, уточняя и исправляя ошибки.
4️⃣ Переписывание: на основе улучшённой логики создаёт новую, более точную версию ответа.
5️⃣ Цикличность: повторяет процесс до 16 раз, пока не достигнет уверенного, логически цельного решения.
💡 Чем интересна модель:
- Меньше затрат на вычисления, а результат выше; высокая эффективность при низких издержках.
- Доказательство того, что собственная логика и архитектура могут быть сильнее простого размера модели. Можно коротко описать ее: «думай, прежде чем действовать».
- Мощные рассуждающие системы становятся доступными даже без огромных кластеров, модель можно запускать на ограниченных ресурсах.
Это не просто «компактаная LLM», это другой способ мышления: модель, которая действительно *думает, прежде чем говорить*.
@ai_machinelearning_big_data
#TinyRecursiveModels #TRM #DeepLearning #NeuralNetworks
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍218❤116🔥86👏66🤔61🎉58🥰54🤩18🤣7💯5🤷♂2
📘 На Stepik вышел курс — «ML-инженер: от первой модели до продакшена»
Хотите не просто натренировать модель в ноутбуке, а довести её до реального продукта? Этот курс — полный путь от основ до production.
• Математика и Python: линейная алгебра, статистика, NumPy, Pandas, визуализация (Matplotlib, Seaborn, Plotly)
• Классика ML: регрессия, KNN, деревья решений, Random Forest, SVM, Naive Bayes
• Ансамбли: XGBoost, LightGBM, CatBoost, подбор параметров (Optuna, Hyperopt), MLflow
• Deep Learning: PyTorch и TensorFlow/Keras, CNN, RNN/LSTM, Attention, Transfer Learning
• Работа с данными: парсинг (BeautifulSoup, Scrapy), SQL/API, feature engineering
• Продвинутые задачи: рекомендательные системы, временные ряды (ARIMA, Prophet), SHAP и LIME
• MLOps: FastAPI, Docker, деплой в облако, мониторинг моделей
• Подготовка к собеседованиям: технические вопросы, системный дизайн, SQL, портфолио
🎓 Сертификат — добавьте в резюме или LinkedIn
🚀 Скидка 25%, действует 48 часов
👉 Пройти курс на Stepik
Хотите не просто натренировать модель в ноутбуке, а довести её до реального продукта? Этот курс — полный путь от основ до production.
• Математика и Python: линейная алгебра, статистика, NumPy, Pandas, визуализация (Matplotlib, Seaborn, Plotly)
• Классика ML: регрессия, KNN, деревья решений, Random Forest, SVM, Naive Bayes
• Ансамбли: XGBoost, LightGBM, CatBoost, подбор параметров (Optuna, Hyperopt), MLflow
• Deep Learning: PyTorch и TensorFlow/Keras, CNN, RNN/LSTM, Attention, Transfer Learning
• Работа с данными: парсинг (BeautifulSoup, Scrapy), SQL/API, feature engineering
• Продвинутые задачи: рекомендательные системы, временные ряды (ARIMA, Prophet), SHAP и LIME
• MLOps: FastAPI, Docker, деплой в облако, мониторинг моделей
• Подготовка к собеседованиям: технические вопросы, системный дизайн, SQL, портфолио
🎓 Сертификат — добавьте в резюме или LinkedIn
🚀 Скидка 25%, действует 48 часов
👉 Пройти курс на Stepik
🤩75👍31🥱20❤19🎉15👌9👏6😁3🔥2
Учёные из MIT создали прорывную гибридную модель - сочетание искусственного интеллекта + физики, которая прогнозирует поведение плазмы в термоядерных реакторах и делает будущие функционирующие установки более надёжными.
🔥 Особо важный момент: модель умеет предсказывать, как ведёт себя сверхгорячая плазма во время остановки (выключения/снижения мощности), это один из самых опасных моментов работы реактора, когда могут происходить разрушительные возмущения.
В отличие от обычных ИИ-моделей, эта требует гораздо меньше тренировочных данных, но остаётся очень точной.
Учёные также разработали алгоритм, который превращает прогнозы модели в конкретные инструкции по управлению плазмой: например, как менять силу магнитов или температуру, чтобы плазма оставалась стабильной и безопасно “загасла”.
@ai_machinelearning_big_data
#mit #science
Please open Telegram to view this post
VIEW IN TELEGRAM
2🔥80👍46👏15❤13🎉12🤩10😨5🤬2💘1
Модель на 1 трлн, из них ≈ 50 млрд активны на токен (MoE-архитектура).
Она обучена на 20 трлн+ токенов, специально отобранных для задач логического мышления и рассуждений. Контекст: 128 000 токенов.
Построена на базе Evo-CoT (Evolutionary Chain of Thought) и Linguistics-Unit RL - нового метода обучения для масштабируемых рассуждений. При помощи Evo-CoT модель постепенно улучшает баланс между точностью рассуждений и вычислительной эффективностью. То есть с каждым шагом она пытается делать рассуждения «глубже», но не слишком дорого по ресурсам.
Моделька демонстрирует сильные результаты в задачах кода, математики, логики и фронтенд-генерации.
В архитектуре задействованы Mixture-of-Experts (1/32 активация), MTP слои и маршрутизация экспертов.
Ling-1T показывает, что огромные модели можно сделать не только мощными, но и экономичными.
https://huggingface.co/inclusionAI/Ling-1T
@ai_machinelearning_big_data
#Ling1T #AI #ML #OpenSource #Reasoning #TrillionScale #FP8
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍258🔥73❤60🤔60👏52💯34😁30🥰24😐10😢8🤩6