Telegram Web
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 На видео 32-летний Янн Лекун демонстрирует первую в мире сверточную нейронную сеть (CNN) для распознавания текста в 1993 году .

📅 Когда появились традиционные методы обработки изображений:

Традиционные (или классические) методы начали развиваться с 1960-х годов, а активно применяться — с 1970–1980-х, задолго до появления современных нейросетей.

✔️ К таким методам относятся:

- Фильтрация изображений (Гаусс, Собель, Лаплас и др.)

- Детектирование границ (Canny, Prewitt)

- Морфологическая обработка (эрозия, дилатация)

- Бинаризация, сегментация, пороговая фильтрация

- Шумоподавление, выделение контуров

📍 К 1990-м эти техники уже активно использовались в промышленности, медицине, военной технике и OCR (распознавании текста), например в факсах и сканерах. Именно в этом контексте и появлялись первые попытки заменить часть ручной обработки нейросетями, как сделал Лекун с CNN.

Всем продуктивного дня ☀️

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍237🔥9953🥰10🤩1
Media is too big
VIEW IN TELEGRAM
Arenadata представила новую дата-платформу Arenadata One: облачную экосистему хранения и обработки данных следующего поколения

Arenadata запустила Arenadata One (AD.One) — cloud-native платформу хранения и обработки данных, созданную специально для работы в мультитенантных облачных средах на базе Kubernetes®.

Что делает AD.One особенной?
🔹 Разделённые Compute и Storage → легко масштабировать ресурсы
🔹 Поддержка S3 Object Storage → единое унифицированное хранилище
🔹 Форматы данных на любой вкус
🔹 Одновременная аналитическая и транзакционная нагрузка
🔹 AI-хранилище для ML/AI задач
🔹 Встроенные инструменты Data Governance, оркестрации, мониторинга и аудита
🔹 Multi-tiering-архитектура → быстрый доступ к «горячим» данным
🔹 Гибридный обмен данными (Public/Private Cloud)

Платформа покрывает задачи от ad hoc-запросов до real-time-аналитики (Spark, Impala), а также поддерживает транзакции на Serverless Postgres (Neon) и хранение векторов и features для AI.

💥 В чём отличие от классических bare-metal СУБД?
AD.One не требует резервирования оборудования и работает в эластичных облачных средах. Это снижает TCO и Time to Market благодаря:
автоматическому масштабированию нагрузки
переиспользованию вычислительных ресурсов
DBaaS-сервису
единой self-service-консоли управления с шаблонами развёртывания

Платформа подходит для построения современных архитектур больших данных (включая Lakehouse) и будет интересна компаниям с неоднородными пиками нагрузки, стремящимися снизить стоимость владения СУБД.

👉 Подробнее о Arenadata One: arenadata.tech/products/arenadata-one
🔥31🥰15👍12😁54
⚡️ Matrix3D: универсальная модель для фотограмметрии от Apple.

Matrix3D — модель, предлагающая решение сразу нескольких задач в рамках единой архитектуры: оценку положения камер, предсказание глубины и генерацию новых ракурсов.

Всю эту красоту обеспечивает модифицированный диффузионный трансформер, который обрабатывает изображения, параметры камер и карты глубины как взаимосвязанные модальности. Он не только упрощает традиционный пайплайн (нет зависимостей от отдельных алгоритмов SfM или MVS), но и повышает точность за счет уникальной оптимизации.

Ключевая особенность Matrix3D — маскированное обучение, позаимствованное из методов MAE. Модель тренируется на частично заполненных данных: парах «изображение-поза» или «изображение-глубина». При этом модель учится «достраивать» недостающие модальности, что позволяет комбинировать входы и выходы во время инференса. Например, можно добавить карту глубины с физического датчика или сгенерировать новые ракурсы на основе всего двух изображений.

Результаты тестов с задачей оценки поз на датасете CO3D Matrix3D обходят специализированные методы (RayDiffusion): точность определения положения камеры достигает 96,3% против 92,4% у конкурентов.

В синтезе видов модель демонстрирует PSNR 20,45 против 19,22 у SyncDreamer, а в оценке глубины — AbsRel 0,036 против 0,064 у Metric3D. При этом Matrix3D не требует отдельных моделей для каждой задачи, все решается в рамках одной модели.

Практическая ценность модели — в ее адаптивности. Например, для 3D-реконструкции из одного кадра Matrix3D сначала генерирует недостающие ракурсы, оценивает их позы и глубину, а затем оптимизирует сцену через 3D Gaussian Splatting.

Для работы с несколькими кадрами без известных поз модель сама восстанавливает параметры камер, что раньше требовало отдельного этапа с COLMAP. Все это реализовано в репозитории с готовыми скриптами — от синтеза видов до полной реконструкции.

Конечно, есть нюансы: качество облаков точек пока уступает другим методам (GeoMVSNet). Но даже имеющиеся результаты достаточны для инициализации 3DGS, а главное — весь процесс занимает несколько минут на одной RTX 3090. Для сравнения: CAT3D, хотя и точнее в синтезе, требует 16х A100 и оптимизации под каждую сцену.


🟡Страница проекта
🟡Модель
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Photogrammetry #Matrix3D #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍56🔥3019🤣4🍓2
Media is too big
VIEW IN TELEGRAM
✔️ ОАЭ вводит обязательное обучение ИИ для школьников всех возрастов.

ОАЭ сделали искусственный интеллект обязательным предметом для всех учащихся — от детского сада до 12 класса. Это часть стратегии, которая должна превратить страну в ведущий центр ИИ-разработок на Ближнем Востоке. Уже с 2025-26 учебного года в государственных школах начнут преподавать основы ИИ, включая этические аспекты и реальное применение технологий.

Параллельно страна активно внедряет ИИ в госуправление: разрабатывает систему для автоматического анализа и обновления законов. Эксперты прогнозируют, что к 2030 году ИИ добавит $96 млрд к ВВП ОАЭ. Сейчас страна лидирует в своем регионе по технологическому развитию, и такие проекты только укрепят ее позиции в будущем.
bloomberg.com

✔️ OpenAI остается некоммерческой структурой, но есть нюансы.

OpenAI объявила о смене корпоративной структуры: теперь коммерческое направление будет работать как Public Benefit Corporation (PBC), но под полным контролем некоммерческой организации. Это решение отменяет предыдущие планы по полному переходу в коммерческий сектор. Основная цель — сохранить миссию компании: развитие искусственного интеллекта на благо всего человечества, а не ради прибыли акционеров.

Как объяснил CEO Сэм Альтман в письме сотрудникам, OpenAI изначально создавалась как некоммерческая организация, и этот принцип останется неизменным. Новая структура позволит привлекать сотни миллиардов долларов для развития ИИ, делая технологии доступнее.

Решение о реструктуризации было принято после консультаций с юристами и общественными деятелями. OpenAI также планирует усилить работу в области безопасности ИИ и открыть доступ к мощным моделям.
openai.com

✔️ Tether анонсирует ИИ-платформу с поддержкой криптоплатежей.

Tether, крупнейший эмитент стейблкоинов, готовит запуск открытой ИИ-платформы. Как сообщил CEO Паоло Ардоино в соцсетях, система будет работать на любом устройстве без API-ключей и централизованных узлов, принимая платежи в биткоинах и USDT. Это решение может стать альтернативой для регионов с ограниченным доступом к фиатным банкам. Пока детали ИИ-платформы раскрыты частично, но цель амбициозна: проект планирует интеграцию криптовалют в повседневные технологии.

Параллельно Tether планирует выпустить новый стейблкоин, привязанный к доллару, для рынка США — при условии одобрения закона GENIUS Act.
pymnts.com

✔️ Anthropic запускает программу "ИИ для науки" с бесплатным доступом к API.

Anthropic анонсировала новую инициативу "AI for Science", которая поможет ускорить научные исследования через предоставление бесплатных API-кредитов. Программа ориентирована на биологию и науки о жизни.

Участвовать могут исследователи из научных учреждений. Заявки отберут по потенциалу проекта, его влиянию и роли ИИ в ускорении работы. Приоритет получат работы по геномике или борьбе с крупными заболеваниями. Податься можно через специальную форму, а решения будет принимать команда Anthropic с привлечением экспертов.
anthropic.com

✔️ Microsoft предложила стратегию развития социально-ориентированного ИИ.

Концепция Societal AI — это подход к разработке ИИ, который учитывает влияние технологий на общество. Основная цель: создание систем, отвечающих потребностям здравоохранения, образования и госуслуг, а также минимизация рисков вроде поляризации мнений.

Проект выделяет 3 принципа: гармония (снижение конфликтов), синергия (усиление человеческих возможностей) и устойчивость (адаптивность к изменениям). Особое внимание уделено 10 ключевым вопросам от этического выравнивания ИИ до трансформации труда и регуляторных рамок. Подробности — в полной версии документа.
microsoft.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍77🔥2921🤣5😐3😁2🗿2👌1🫡1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Калифорнийский стартап объявляет о прорыве в области робототехники для повседневных задач с помощью ИИ π0.5 — модели «зрение-язык-действие».

Все, что видит робот, он видит впервые.

🧪 В экспериментах Робот успешно справился с уборкой посуды, застиланием постели и мытьем пола в незнакомых домах, демонстрируя полное понимание задачи, её разбиение на шаги и адаптацию к новым условиям.

➡️ Робот воспринимает команды от абстрактных ("убери посуду") до пошаговых ("подними кружку", "поставь в раковину"), демонстрируя потенциал обобщения для сложных роботизированных навыков.

Модель анализирует семантику задачи, разбивает её на шаги и генерирует команды для моторных систем. π0.5 умеет реагировать и на голосовые команды разной детализации — от «убери посуду» до точечных указаний

✔️ Подробнее про π0.5 мы писали в новостном дайджесте

@ai_machinelearning_big_data

#robots #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
127👍67🔥46🥰7🍓4😁1
🌟 NeMo-Inspector: продвинутый анализ генерации языковых моделей.

NeMo-Inspector от NVIDIA — это инструмент, который превращает анализ генераций из рутины в осмысленный процесс. Он не просто показывает результаты, а помогает их систематизировать, сравнивать и даже чистить данные.

NeMo-Inspector не просто просмотрщик логов. Это полноценная среда, где можно менять промпты на лету, маркировать проблемные данные и проверять гипотезы.

Для инженеров, которые хотят не просто получать ответы от LLM, но и понимать, как они рождаются, NeMo-Inspector мастхэв. Он не даст магии, зато сэкономит часы ручного разбора и поможет найти слабые места даже в сложных пайплайнах, а поддержка Markdown, LaTeX и подсветки синтаксиса сделает работу с математическими задачами или кодом менее муторной.

▶️NeMo-Inspector работает в двух режимах: 

🟢Inference Page позволяет экспериментировать с промптами в реальном времени. Вы можете писать запросы вручную или использовать шаблоны с плейсхолдерами: например, подставлять разные задачи в структуру «Проблема: {вопрос}; Решение: {ответ}». Это удобно, когда нужно тестировать гипотезы без постоянной перезагрузки модели.

🟢Analyze Page заточен под глубокий разбор уже сгенерированных данных. Загрузите JSON-файлы и инструмент покажет выборки в читаемом формате с подсветкой кода и формул.

Гибкость проводимого анализа - особенность NeMo-Inspector. Вы можете сравнивать, как одна модель справляется с разными параметрами (температура, top_p) или как разные модели решают одну задачу. Допустим, проверяете, повышает ли CoT точность ответов. NeMo-Inspector выведет результаты бок о бок, а еще посчитает статистику: доля правильных ответов, «уверенность» модели (persistence) или кастомные метрики, которые можно задать самостоятельно через Python-функции.

Из практических кейсов: NeMo-Inspector помог «почистить» синтетический датасет GSM-Plus, где 46,99% данных оказались проблемными (в некоторых вопросах было по два знака вопроса — модель путалась, на какой отвечать). В проекте с OpenMath-Mistral-7B выяснилось, что 26% ошибок связаны с падением качества сгенерированного кода. После доработки датасета точность модели выросла на 4,17%.


📌Лицензирование: Apache 2.0 License.


🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #NeMoInspector #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4327🔥13🍓4
Нейросеть GigaChat 2.0 — тот самый сеньор, который уверенно затащит любую задачу. Сохраняем топ-5 промптов и тестируем в вебе или Телеграм-боте:

1. Работа с кодом
Посмотри мой скрипт для парсинга данных с сайта на Python. Он выполняется слишком медленно. Объясни, что я делаю неэффективно, и покажи, как его улучшить [вставить фрагмент]


2. Обучение
Подбери практические задания, чтобы прокачаться в TypeScript и научиться писать устойчивый фронтенд


3. Советы по самопрезентации
Помоги подготовиться к собеседованию на вакансию техлида [добавить ссылку]


4. Персональные подборки
Составь топ-10 книг по программированию для геймдева — от движков до оптимизации


5. Актуальные события
Привет, я специалист по машинному обучению, стараюсь развивать свои компетенции. Порекомендуй конференции по машинному обучению в России, на которые я ещё успею попасть.
🤣146😁34👍188🗿8🥱7🔥3🤬3🤷‍♂1😐1
🌟 Voila: набор голосовых моделей для взаимодействия в реальном времени и roleplay.

Voila — семейство голосовых языковых моделей с поддержкой 6 языков (английский, китайский, французский, немецкий, японский и корейский), которое амбициозно позиционирует себя как конкурентов Siri или Alexa.

Классические системы используют конвейер из модулей: ASR, обработка текста LLM и затем TTS. Этот пайплайн порождает задержки до нескольких секунд, теряет эмоции и тон голоса. Voila обрабатывает аудио напрямую через end-to-end архитектуру. Модель делит звук на семантические и акустические токены, сохраняя нюансы акцента и интонации, а кастомное LLM-ядро отвечает за осмысленные ответы. В архитектуре Voila задержка составляет всего 300 мс — как у человека.

В тестах на собственном бенчмарке в задачах ASR Voila показала уровень ошибок (WER) 2,7% против 5,7% (Moshi), 3,6% (FastConformer). Для TTS ее аудио настолько естественно, что система ошибается в расшифровке всего в 2,8% случаев (7,7 у YourTTS, 4,7 у Moshi).

▶️ Состав релиза:

🟢Voila-base - базовая модель для обработки голоса и текста, поддерживает ASR (распознавание речи) и TTS (синтез речи). Основа для остальных версий.

🟢Voila-Chat - модель для диалогов. Генерирует естественные ответы с учетом контекста, сохраняет эмоции и интонации. Подходит для голосовых ассистентов и чат-ботов.

🟢Voila-Autonomous - превью-версия полнодуплексной модели. Может слушать и говорить одновременно, имитируя живое общение: перебивает, вставляет реплики-подтверждения («угу»), реагирует на эмоции в реальном времени.

🟢Voila-Audio-alpha - экспериментальная версия для анализа аудио. Распознаёт неречевые звуки (шум, эмоции), идентифицирует говорящего по тембру.

🟠Voila-Tokenizer - аудио-токенайзер. Преобразует аудио в семантические и акустические токены. Разделяет смысл (слова) и звуковые нюансы (акцент, тон), чтобы LLM эффективнее обучалась на аудиоданных. База всех моделей Voila.


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🟡Demo
🟡Сообщество в Discord
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #ASR #TTS #VOILA #Matrix
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6031🥰12🔥7😁4
Media is too big
VIEW IN TELEGRAM
✔️ Google анонсировала функцию Simplify для iOS.

В приложении Google для iOS появилась новая функция Simplify, которая с помощью ИИ делает сложные или технические тексты в интернете проще для понимания. Разработка использует модель Gemini от Google Research: она переформулирует контент, сохраняя ключевые детали, но убирая лишнюю сложность. Тесты показали, что после упрощения пользователи лучше усваивают информацию. Функция не только облегчает обучение, но и удерживает пользователей в экосистеме Google, конкурируя с ChatGPT. Обновление уже доступно в AppStore для iOS.
9to5google.com

✔️ Вышла Gemini 2.5 Pro Preview.

Google досрочно выпустила обновлённую версию Gemini 2.5 Pro Preview. Модель теперь лидирует в рейтинге WebDev Arena благодаря способности создавать эстетичные и функциональные веб-приложения.

Среди новшеств — продвинутая работа с видео: модель преобразует ролики в интерактивные приложения, например, учебные программы на базе YouTube-видео. Для фронтенд-разработчиков упростилась реализация фич: Gemini 2.5 Pro генерирует CSS-код, подбирая стили под дизайн, и даже создает анимации. Обновление также устраняет прошлые ошибки в вызове функций и повышает их срабатывание. Модель доступна через Gemini API в Google AI Studio и Vertex AI для корпоративных клиентов — цена осталась прежней.
developers.googleblog.com

✔️ OpenAI достигла соглашения о покупке Windsurf.

OpenAI договорилась о покупке Windsurf за $3 млрд. Это станет крупнейшей сделкой компании в условиях растущей конкуренции на рынке ИИ-инструментов для программистов. По данным источников, соглашение ещё не закрыто, а стороны пока отказались от комментариев.

Этим шагом OpenAI стремится закрепиться в нише, где набирают обороты стартапы вроде Anysphere. Покупка Windsurf не только расширит ее инструментарий, но и даст преимущество в гонке за лидерство в создании систем, генерирующих код по текстовым запросам.
bloomberg.com

✔️ LTX Studio выпустила открытую видео-модель с рекордной скоростью и качеством.

LTX Studio представила новую модель для генерации видео, которая сочетает скорость, детализацию и контроль. Свыше 13 млрд. параметров и технология multiscale rendering позволяют добиться плавного движения, четкой картинки и минимума артефактов даже в динамичных сценах.

Суть multiscale rendering — анализ сцены на разных уровнях детализации, который сохраняет крупные объекты стабильными, не теряя мелких элементов. Результат: реалистичная анимация и согласованность между кадрами.

Модель работает до 30 раз быстрее аналогов при том же качестве и позволяет управлять ключевыми кадрами и камерой — можно буквально «режиссировать» каждый момент. Она доступна бесплатно на платформе LTX Studio или для локального инференса, веса опубликованы на HuggingFace.
LTX в сети Х (ex-Twitter)

✔️ Обновление ComfyUI: нативные API-ноды и новый дизайн.

ComfyUI выпустила масштабное обновление. Теперь пользователи получают 65 готовых API-нод, которые позволяют подключать платные облачные модели — от Veo2 от Google до GPT4o от OpenAI. Обновление объединяет 11 семейств моделей, включая генерацию видео (Pika 2.2, MiniMax) и изображений (Stable Diffusion 3.5, Ideogram V3).

Цены совпадают с оригинальными API, а платформа остается бесплатной и открытой. В планах — поддержка своих API-ключей, параллельное выполнение задач и оптимизация для видео. Вместе с этим ComfyUI обновила внешний вид: логотип из «кубиков» отсылает к графам воркфлоу, а яркие цвета подчеркивают баланс между творчеством и серьезностью инструмента.
blog.comfy.org

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6222🔥12🥰5
🌟 NVIDIA Parakeet-tdt-0.6b-v2: ASR-модель с поддержкой временных меток.

NVIDIA представила новую модель автоматического распознавания речи (ASR) — Parakeet-tdt-0.6b-v2 c 600 млн. параметров для английского языка. Она не просто транскрибирует аудио в текст, но и распознает пунктуацию, капитализацию и временные метки с точностью до слова.

Модель устойчива к шумам и справляется даже с расшифровкой песен или чисел. Это достигнуто за счет обучения на данных, в которые включили «шумные» источники (YouTube, записи телефонных разговоров и уличные диалоги). Как отмечают авторы, RTFx-показатель равен 3380 (при батче 128), что позволяет использовать Parakeet для масштабных промышленных задач.

В основе Parakeet - гибридная архитектура. Она комбинирует скоростной кодировщик FastConformer с декодером TDT, который оптимизирован для транскрипции.

TDT - декодер, который предсказывает слова, звуки и их длительность. Вместо того чтобы проверять каждый кусочек аудиозаписи по порядку, TDT «перепрыгивает» через лишние сегменты, опираясь на прогноз времени, которое занимает текущий токен. Это сокращает вычисления, экономит время и при этом не теряется точность.


Fast Conformer — это переработанная архитектура Conformer, которая ускоряет распознавание речи за счет увеличения downsampling до 8x с помощью более легких сверток и упрощенных блоков, и замены стандартного внимания на комбинацию локального контекста и одного глобального токена.


Обучение Parakeet проводилось в 2 этапа: сначала на 128 GPU A100 с использованием псевдоразмеченных данных, а затем — на 500 часах человеческой транскрипции. Часть обучающего датасета пока недоступна публично, их NVIDIA обещает открыть после конференции Interspeech 2025.

Результаты на бенчмарке Open ASR впечатляют: средняя ошибка (WER) составляет всего 6.05% при greedy decoding без внешней языковой модели. Для сравнения, на чистом аудио из LibriSpeech WER составляет 1.69%, а сильном зашумлении (SNR 5) показатель не превышает 8.39%. В телефонии, где аудио сжимается через μ-law, потери в точности минимальны — всего 4.1%. По этим результатам, Parakeet-tdt-0.6b-v2 может стать универсальным инструментом для колл-центров или мобильных приложений.

Модель поддерживает форматы .wav и .flac с частотой 16 кГц и требует всего 2 ГБ оперативной памяти. Для интеграции разработчикам понадобится фреймворк NeMo от NVIDIA, он упрощает настройку под конкретные задачи.


📌Лицензирование: CC-BY-4.0 License.


🟡Модель
🟡Demo


@ai_machinelearning_big_data

#AI #ML #ASR #Parakeet #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5627🔥21
🚀 Релиз: Mistral Medium 3

Компания Mistral представила Mistral Medium 3 — обновлённую версию своей модели среднего размера, созданную с упором на баланс качества, скорости и гибкости.

Mistral Medium 3 обеспечивает топовую производительность, оставаясь на порядок дешевле конкурентов.

Например, модель работает на уровне или обходит Claude Sonnet 3.7 на большинстве бенчмарков при значительно более низкой цене ($0.4 за 1M токенов входа / $2 за 1M токенов выхода).

По производительности Mistral Medium 3 также опережает ведущие открытые модели, такие как Llama 4 Maverick, и корпоративные решения вроде Cohere Command A. По стоимости модель выигрывает у лидеров по цене, например, DeepSeek v3 — как при использовании API, так и при самостоятельном размещении.

Mistral Medium 3 выделяется в задачах программирования и STEM, где она приближается по качеству к значительно более крупным и медленным моделям-конкурентам.

Кроме того, Mistral Medium 3 можно развернуть в любом облаке, включая self-hosted окружения от четырёх GPU и выше.

https://mistral.ai/news/mistral-medium-3

@ai_machinelearning_big_data

#Mistral #AI #нейросети #новости #mistralmedium3 #opensourcemodel #генерациякода #AIразработка
52👍26🔥17🥱6😁3
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 В Калифорнии открылся ресторан, где роботы готовят бургеры за 27 секунд

Роботы идеально подходят для рутинной и однообразной работы, автоматизируя повторяющиеся задачи с высокой эффективностью.

@ai_machinelearning_big_data

#роботы #автоматизация #технологии
👍12925🥱18🔥14💯4
Media is too big
VIEW IN TELEGRAM
✔️ IBM Linux ONE Emperor 5: мейнфрейм для эпохи ИИ.

IBM представила новый мейнфрейм IBM Linux ONE Emperor 5. Основа системы — процессор Telum II с 5-нм технологией Samsung: 8 ядер на 5.5 ГГц, кэш L4 до 2.88 ГБ и встроенный ИИ-ускоритель на 24 трлн. операций в секунду. Для тех, кому мало, к концу 2025 года обещают IBM Spyre Accelerator с 32 ядрами.

Платформа оптимизирована под ИИ: AI Toolkit упростит разработку, а ОС Red Hat OpenShift AI позволит управлять VM и контейнерами в одном интерфейсе. Безопасность тоже не забыли. Данные шифруются даже в памяти (confidential computing), а поддержка постквантовых алгоритмов NIST защитит от атак будущего. IBM заявляет, что Emperor 5 сократит для владельцев совокупную стоимость владения на 44% за 5 лет по сравнению с x86-серверами. Система обещает доступность 99.999999% — почти без простоев.
zdnet.com

✔️ Figma запустила ИИ-инструменты для сайтов, прототипирования и маркетинга.

Figma Sites, в нем на основе прототипов можно генерировать адаптивные сайты с анимациями. Инструмент позволяет быстро публиковать проекты, а правки вносить без сохранения, контент можно редактировать совместно напрямую в интерфейсе. Для сложных элементов доступна генерация кода или ручная настройка. Figma Make — инструмент для прототипирования веб-приложений: по описанию ИИ создает каркас, который команда может дорабатывать.

Figma Buzz: шаблоны с бренд-ассетами, массовая генерация креативов из таблиц и ИИ-фоны для изображений. Обновленный Figma Draw теперь включает продвинутое векторное редактирование — кисти и текстуры. Все инструменты доступны в рамках подписки от 8$/месяц.
figma.com

✔️ К 2026 году большинство компаний введут должность Chief AI Officer.

Согласно исследованию Amazon, 60% организаций уже имеют Chief AI Officer (CAIO), а еще 26% планируют создать эту роль к 2026 году. CAIO станет ключевым звеном в координации ИИ-стратегий на фоне интереса к генеративному ИИ: 45% компаний назвали его приоритетом на 2025 год, обогнав традиционные инструменты кибербезопасности (30%).

Несмотря на активные эксперименты (90% компаний тестируют ИИ), только 44% перешли к полноценному внедрению. Главные барьеры — дефицит кадров (55%), высокая стоимость разработки (48%) и проблемы с качеством данных. При этом 92% организаций намерены усиленно нанимать специалистов по ИИ в 2025 году, а 56% уже запустили программы обучения.
Однако лишь 14% компаний имеют четкий план цифровой трансформации — к 2026 году показатель вырастет до 76%, но четверть все еще останется без стратегии.
amazon.com

✔️ ChatGPT набирает обороты по трафику.

Свежие данные Similarweb показывают, что ChatGPT стал одним из самых посещаемых сайтов в мире — в апреле 2025 года на него пришлось 4,78 млрд визитов. Это на 18% больше, чем у сети X. При этом трафик сервиса резко падает по выходным: в будни активность выше на 50%. Это подтверждает, что инструментом в основном пользуются для работы, учебы и исследований.
Техническая сторона тоже отражает тренд: на выходных API OpenAI обрабатывает запросы быстрее из-за снижения нагрузки. Интересно, что пользователи ChatGPT редко переключаются на другие ИИ-сервисы — только 4% из них пробуют Perplexity. Для сравнения: 86% аудитории Claude параллельно используют ChatGPT. Google Gemini хотя и набирает популярность, особенно на Android, он все еще уступает ChatGPT по лояльности и охвату.
SimilarWeb в сети X(ex-Twitter)

✔️ OpenAI запускает инициативу развития ИИ для стран.

OpenAI анонсировала программу "OpenAI for Countries" в рамках проекта Stargate — масштабного плана по развитию ИИ-инфраструктуры. Компания предлагает странам за пределами США присоединиться к созданию локальных дата-центров, обеспечивающих суверенитет данных и адаптацию ИИ под национальные нужды. Инициатива включает кастомизацию ChatGPT для здравоохранения, образования и госуслуг с учетом языковых и культурных особенностей. Участие в проекте подразумевает вклад в глобальную сеть Stargate. Первая фаза — 10 пилотных проектов с отдельными странами. Переговоры с заинтересованными государствами уже ведутся через представительства компании.
openai.com
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5922🔥16🤔7👌2
2025/07/08 15:40:58
Back to Top
HTML Embed Code: