Telegram Web
Forwarded from Machinelearning
✔️ Nous Research запустил бета-версию Forge Reasoning API.

Forge Reasoning API позволяет улучшить возможности популярных LLM, добавив интерпретатор кода и расширенные возможности рассуждений. API использует три архитектуры: поиск по древу Монте-Карло (MCTS), цепочка кода (CoC) и смесь агентов (MoA).

Forge совместим с Hermes 3, Claude Sonnet 3.5, Gemini и GPT 4 и может комбинировать несколько языковых моделей для повышения разнообразия выходных данных. Beta-тестирование API будет сосредоточено на тестировании архитектуры системы рассуждений.
nousresearch.com

✔️ Google устраняет уязвимости в Vertex AI, которые могли привести к утечке моделей ИИ.

Уязвимости, обнаруженные Palo Alto Networks Unit 42, позволяли злоумышленникам получать несанкционированный доступ к данным и извлекать корпоративные модели из системы.

Первая уязвимость, связанная с функцией "пользовательские задания", позволяла повышать привилегии и получать доступ ко всем сервисам данных в проекте. Вторая уязвимость, связанная с функцией "вредоносные модели", позволяла развертывать вредоносные модели и получать доступ ко всем другим настроенным моделям, что создавало серьезный риск утечки конфиденциальных данных.
Google уже установила исправления для устранения этих уязвимостей.
darkreading.com

✔️ JetBrains выпустила обновление 2024.3 для AI Assistant и IDEs.

AI Assistant 2024.3 теперь поддерживает модели Gemini, предоставляя пользователям возможность выбирать между моделями Gemini, OpenAI или локальными моделями. Ассистент также предлагает улучшенное автозавершение кода, расширенное управление контекстом и встроенную генерацию подсказок.

Обновления коснулись IDE JetBrains: PyCharm (добавлена функция AI-внутристроковых подсказок) , WebStorm (реализована улучшенная навигация по компонентам), GoLand (добавлены многострочное завершение, новая функция встроенной подсказки и новые языковые возможности из последних релизов Go), PhpStorm( новые проверки и быстрые исправления для обновления до PHP 8.4) и RubyMine(поддержка Rail 8, более быстрое завершение кода с учетом контекста и улучшенная интеграция модульных тестов).
sdtimes.com

✔️ Red Hat приобретает технологию для снижения стоимости машинного обучения.

Red Hat объявила о намерении приобрести Neural Magic, разработчика проекта vLLM с открытым исходным кодом. Цель приобретения в том, чтобы Red Hat и ее материнская компания IBM могли снизить барьер для входа организаций, желающих запускать рабочие нагрузки машинного обучения без необходимости развертывания серверов, оснащенных GPU.

Neural Magic разработала способ запуска алгоритмов машинного обучения без GPU. Вместо этого компания методы обрезки и квантования для оптимизации моделей, позволяя им работать на доступных процессорах без ущерба для производительности.
computerweekly.com

✔️ Франсуа Шолле покидает Google.

Французский разработчик Франсуа Шолле, создатель Keras, покидает Google после почти 10 лет работы. Keras лежит в основе ряда технологических продуктов: беспилотные автомобили Waymo, рекомендательные системы на YouTube, Netflix и Spotify.

В 2019 году Шолле опубликовал тест Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI), который измеряет способность систем ИИ решать новые задачи на рассуждение. Шолле неоднократно утверждал, что подход, принятый многими крупными лабораториями, разрабатывающими ИИ (внедрение все большего количества данных и вычислительных ресурсов в модели), не позволит достичь ИИ, который будет таким же «умным», как люди.

34-летний Франсуа сообщил в посте X, что он создает новую компанию вместе с «другом», но отказался раскрывать подробности.
techcrunch.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥42
This media is not supported in your browser
VIEW IN TELEGRAM
🖼 AutoVFX — инструмент, позволяющий создавать видео с потрясающими эффектами с помощью ИИ, используя для этого только одно фото и инструкции на человеческом языке!

🔐 Лицензия: MIT

🖥 Github

@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍42🔥2
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

МАШИННОЕ ОБУЧЕНИЕ: www.tgoop.com/ai_machinelearning_big_data
C++ www.tgoop.com/cpluspluc
Python: www.tgoop.com/pythonl
Linux: www.tgoop.com/linuxacademiya
Хакинг: www.tgoop.com/linuxkalii
Devops: www.tgoop.com/DevOPSitsec
Data Science: www.tgoop.com/datascienceiot
Javascript: www.tgoop.com/javascriptv
C#: www.tgoop.com/csharp_ci
Java: www.tgoop.com/javatg
Базы данных: www.tgoop.com/sqlhub
Python собеседования: www.tgoop.com/python_job_interview
Мобильная разработка: www.tgoop.com/mobdevelop
Docker: www.tgoop.com/DevopsDocker
Golang: www.tgoop.com/Golang_google
React: www.tgoop.com/react_tg
Rust: www.tgoop.com/rust_code
ИИ: www.tgoop.com/vistehno
PHP: www.tgoop.com/phpshka
Android: www.tgoop.com/android_its
Frontend: www.tgoop.com/front
Big Data: www.tgoop.com/bigdatai
Собеседования МЛ: www.tgoop.com/machinelearning_interview
МАТЕМАТИКА: www.tgoop.com/data_math
Kubernets: www.tgoop.com/kubernetc
Разработка игр: https://www.tgoop.com/gamedev

💼 Папка с вакансиями: www.tgoop.com/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: www.tgoop.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.tgoop.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.tgoop.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.tgoop.com/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: www.tgoop.com/memes_prog
🇬🇧Английский: www.tgoop.com/english_forprogrammers
🧠ИИ: www.tgoop.com/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://www.tgoop.com/addlist/BkskQciUW_FhNjEy
👍1
🔍 Эта статья исследует API-ориентированных веб-агентов, предлагая новые подходы к автоматизации взаимодействий с веб-сайтами.

⭐️ Вместо классического веб-скрейпинга авторы предлагают использование открытых и полузакрытых API, создавая агентов, которые могут выполнять сложные задачи, такие как бронирование билетов или составление расписаний, с высокой точностью и эффективностью. Подход улучшает надежность и совместимость агентов, особенно при изменениях интерфейсов сайтов.

📖 Читать: *клик*

@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍653
🖥 Activepieces — это ИИ платформа для автоматизации и построения рабочих процессов с поддержкой no-code и open-source, предназначенная для упрощения интеграций между различными сервисами и приложениями, такими как Google Sheets, OpenAI, Discord и другие!

🌟 Она предоставляет пользователям визуальный редактор для построения процессов с использованием условных ветвлений, циклов и перетаскивания элементов.

💡 Пользователи могут воспользоваться готовыми шаблонами для создания своих процессов, а также добавлять собственные «кусочки» кода в TypeScript, чтобы расширять функциональность. Activepieces также поддерживает развертывание как в облаке, так и на собственных серверах, предлагая гибкость в настройке и масштабировании автоматизаций, что особенно удобно для малых и средних компаний, а также разработчиков и технических команд, стремящихся к улучшению производительности и сокращению затрат на интеграцию внешних сервисов.

🖥 Github

@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍52🔥2👌1
🔥 firecrawl-simple — урезанная и оптимизированная версия библиотеки firecrawl! Она позволяет вам быстро конвертировать веб-сайты в готовый для чтения LLM текст.

🔐 Лицензия: AGPL-3.0

🖥 GitHub

@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍63🔥2👌1
📖 Эта статья описывает новую методику повышения безопасности крупных языковых моделей (LLM) для быстрой адаптации к новым типам атак!

🌟 Вместо стремления к полной устойчивости к всем возможным атакам, предлагается метод "быстрого ответа" на новые попытки обхода защиты. Система адаптируется после изучения нескольких примеров атак, а затем блокирует аналогичные обходы. Представленный инструмент RapidResponseBench помогает оценить эффективность подхода, уменьшая успех атак в сотни раз даже после одного примера обхода.

🔗 Arxiv
🖥 Github

@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍42🔥1
Forwarded from Machinelearning
🌟 LAION-DISCO-12M: большой датасет музыки с Youtube.

Набор данных LAION-DISCO-12M состоит из 12 млн ссылок на общедоступные треки YouTube с метаданными. Он собран для поддержки фундаментальных исследований в области машинного обучения, созданию базовых моделей обработки звука, извлечения музыкальной информации, анализа наборов данных аудио и обучение рекомендательных систем и приложений.

Метод создания LAION-DISCO-12M основан на рекурсивном поиске исполнителей на платформе YouTube Music. Начиная с начального списка исполнителей топ-чартов разных стран, новые артисты обнаруживались путем анализа раздела "Похожие исполнители".

Для каждого исполнителя извлекались метаданные: имя, количество подписчиков и список всех песен и музыкальных клипов. Каждая песня или музыкальный клип были связаны с URL-адресом YouTube.

Размер датасета составляет 250 516 исполнителей и 12 648 485 треков.

Поля метаданных:

🟢song_id - идентификатор трека;
🟢title - название;
🟢artist_names - имя исполнителя;
🟢artist_ids - идентификатор исполнителя;
🟢album_name - название альбома;
🟢album_id - идентификатор альбома;
🟢isExplicit - признак наличия ненормативной лексики;
🟢views - количество просмотров;
🟢duration - продолжительность трека.


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Датасет


@ai_machinelearning_big_data

#AI #ML #LAION #Audio #Dataset
Please open Telegram to view this post
VIEW IN TELEGRAM
👍62
Новая открытая версия от Apple - AIMv2 - крупномасштабные визуальные кодеры 🔥

> >
Превосходит CLIP и SigLIP по основным показателям мультимодального понимания
> Превосходит DINOv2 по обнаружению объектов
> Высокая эффективность распознавания с помощью AIMv2-3B, достигающая 89,5% на ImageNet
> Интегрированные трансформаторы (пользовательский код)

HF: https://huggingface.co/collections/apple/aimv2-6720fe1558d94c7805f7688c
Paper: https://huggingface.co/papers/2411.14402

@bigdatai
👍31👎1🔥1💩1🤡1
🔥 Selective Context — полезный инструмент, который сжимает ваш запрос и контекст, позволяя LLM (например, ChatGPT) обрабатывать в 2 раза больше контента. Это особенно полезно при работе с длинными документами и поддержании длительных разговоров без ущерба для производительности при выполнении различных задач!

🖥 Github

@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥53👌2🥰1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 LogoCreator — приложение с открытым исходным кодом, которое использует Flux 1.1 для генерации разнообразных логотипов по вашему запросу!

🖥 Github

@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍3🔥2👌1
🖥 SQLFluff — это инструмент для статического анализа SQL-кода (SQL-linter), который помогает проверять и форматировать SQL-запросы в соответствии с определёнными стилевыми правилами!

🌟 Этот проект поддерживает гибкость за счёт настройки под разные диалекты SQL, такие как ANSI SQL, PostgreSQL, MySQL, BigQuery, Snowflake и многие другие.

🌟 Он особенно полезен в проектах ETL и ELT, а также совместим с такими инструментами, как Jinja и dbt (Data Build Tool), поддерживая шаблонизированные SQL-запросы. SQLFluff может автоматически исправлять большинство ошибок форматирования, экономя время разработчиков и позволяя сосредоточиться на задачах высокой важности. Для удобства пользователей доступно расширение для Visual Studio Code и подробная документация.

🔐 Лицензия: MIT

🖥 Github

@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥63😍3👌2
Forwarded from Machinelearning
🌟 SmolTalk: синтетический англоязычный датасет для обучения LLM.

SmolTalk - это синтетический датасет, разработанный HuggingFace для обучения SmolTalk: новый синтетический набор данных для обучения больших языковых моделей LLM с учителем. Он состоит из 2 млн. строк и был использован для создания семейства моделей SmolLM2-Instruct. SmolTalk включает в себя как новые, так и существующие наборы данных.

Новые наборы данных:

🟢Smol-Magpie-Ultra (400 тыс. строк);
🟢Smol-constraints (36 тыс. строк);
🟢Smol-rewrite (50 тыс. строк);
🟢Smol-summarize (101 тыс. строк).

Существующие общедоступные наборы данных:

🟠OpenHermes2.5 (100 тыс. строк);
🟠MetaMathQA (50 тыс. строк);
🟠NuminaMath-CoT (1120 тыс. строк);
🟠Self-Oss-Starcoder2-Instruct (1120 тыс. строк);
🟠SystemChats2.0 (30 тыс. строк);
🟠LongAlign (примеры на английском языке с менее 16 тыс. токенов);
🟠Everyday-conversations (50 тыс. строк);
🟠APIGen-Function-Calling (80 тыс. строк);
🟠Explore-Instruct-Rewriting (30 тыс. строк).

SmolTalk сравнили недавно выпущенным набором данных Orca AgentInstruct 1M, обучив SmolLM2 на обоих наборах данных с использованием одинаковой конфигурации обучения.

Результаты показали, что SmolTalk показал значительные улучшения в производительности модели, особенно в задачах математики, программирования и следованию системным промптам. Наблюдались также значительные улучшения в масштабе 7B при обучении Mistral-7B на SmolTalk, особенно по показателям IFEval, BBH, GS8Mk и MATH.

▶️Загрузка датасета для трейна:

from datasets import load_dataset

ds = load_dataset("HuggingFaceTB/smoltalk", "all", split="train")
# to load the train split of a specific subset such as smol-magpie-ultra, you can do
ds = load_dataset("HuggingFaceTB/smoltalk", "smol-magpie-ultra", split="train")


📌Лицензирование: Apache 2.0 License.


🟡Датасет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #HuggingFace #Dataset
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥2
📝 LLM Graph Builder — инструмент для создания графов знаний на базе базы данных Neo4j, преобразуя неструктурированные данные (например, текстовые файлы, PDF-документы, видео с YouTube, веб-страницы) в структурированные графы!

🌟 Он использует возможности ИИ-моделей, от OpenAI и LangChain, для извлечения сущностей, их связей и атрибутов из данных.

🔍 Основные функции:

🌟 Генерация графов знаний на основе предоставленных данных.

🌟 Возможность работы с собственными схемами данных или готовыми шаблонами.

🌟 Просмотр графов через Neo4j Bloom и взаимодействие с ними с помощью запросов.

🌟 Интеграция с локальными файлами, S3, YouTube и другими источниками данных.

🔐 Лицензия: Apache-2.0

🖥 Github

@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
4🔥2👌2
🔥Интересная дискуссия на reddit о 4-битном квантовании без потерь для Qwen2.5 от Intel AutoRound!

🎯Полный текст: https://reddit.com/r/LocalLLaMA/comments/1h0aev6/lossless_4bit_quantization_for_large_models_are/?rdt=60370

@bigdatai
4👍2🔥2
🔥 Garak — инструмент от NVIDIA для автоматизированного тестирования безопасности и надежности крупных языковых моделей!

🌟 Он позволяет выявлять уязвимости, проблемы с устойчивостью и некорректные ответы моделей, применяя различные методики тестирования. Это помогает разработчикам и исследователям совершенствовать модели и повышать их качество.

🌟 Инструмент также поддерживает расширение функциональности: пользователи могут добавлять свои собственные тесты, создавая кастомные модули.

🔐 Лицензия: Apache-2.0

🖥 Github

@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
5🔥3👍2
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ ERPoT: Эффективное и надежное отслеживание движения мобильных роботов на основе легких и компактных полигональных карт

https://github.com/ghm0819/ERPoT

@bigdatai
👎2💩2🤡21👍1🔥1
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

МАШИННОЕ ОБУЧЕНИЕ: www.tgoop.com/ai_machinelearning_big_data
C++ www.tgoop.com/cpluspluc
Python: www.tgoop.com/pythonl
Linux: www.tgoop.com/linuxacademiya
Хакинг: www.tgoop.com/linuxkalii
Devops: www.tgoop.com/DevOPSitsec
АНАЛИЗ Данных: www.tgoop.com/data_analysis_ml
Javascript: www.tgoop.com/javascriptv
C#: www.tgoop.com/csharp_ci
Java: www.tgoop.com/javatg
Базы данных: www.tgoop.com/sqlhub
Python собеседования: www.tgoop.com/python_job_interview
Мобильная разработка: www.tgoop.com/mobdevelop
Docker: www.tgoop.com/DevopsDocker
Golang: www.tgoop.com/golang_interview
React: www.tgoop.com/react_tg
Rust: www.tgoop.com/rust_code
ИИ: www.tgoop.com/vistehno
PHP: www.tgoop.com/phpshka
Android: www.tgoop.com/android_its
Frontend: www.tgoop.com/front
Big Data: www.tgoop.com/bigdatai
Собеседования МЛ: www.tgoop.com/machinelearning_interview
МАТЕМАТИКА: www.tgoop.com/data_math
Kubernets: www.tgoop.com/kubernetc
Разработка игр: https://www.tgoop.com/gamedev

💼 Папка с вакансиями: www.tgoop.com/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: www.tgoop.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.tgoop.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.tgoop.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.tgoop.com/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: www.tgoop.com/memes_prog
🇬🇧Английский: www.tgoop.com/english_forprogrammers
🧠ИИ: www.tgoop.com/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://www.tgoop.com/addlist/BkskQciUW_FhNjEy
👍21🔥1
2025/07/08 18:07:18
Back to Top
HTML Embed Code: