Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
Однако у этой технологии есть проблема с временной несогласованности в видео, что значительно ограничивает её практическое применение.
😩Существующие методы могут улучшить согласованность видео, но они применимы к коротким видео (менее 10 секунд) и требуют компромисса между качеством и эффективностью съёмки.
🤗 Video Depth Anything — модель, которая обеспечивает высококачественную и последовательную оценку глубины видео без ущерба для их эффективности.
Она построена на основе Depth Anything V2 и обладает мощным пространственно-временным управлением.
Доступны модели различных масштабов, при этом самая маленькая из них обеспечивает производительность в реальном времени со скоростью 30 кадров в секунду 🔥👍
Начало работы:
git clone https://github.com/DepthAnything/Video-Depth-Anything
cd Video-Depth-Anything
pip install -r requirements.txt
▪GitHub
▪Paper
▪Model Small
▪Model Large
▪Demo
@ai_machinelearning_big_data
#DepthAnything #opensource #ml #depthestimation #videodepth
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Обобщение и переобучение в машинном обучении.
- Видео
- Урок 1 / Урок2 / Урок3 / Урок4 / Урок5 /
- Урок6/ Урок7/ Урок 8
- Colab
-Полный курс
#ml #math #mlmath #probability #машинноеобучение
@bigdatai
- Видео
- Урок 1 / Урок2 / Урок3 / Урок4 / Урок5 /
- Урок6/ Урок7/ Урок 8
- Colab
-Полный курс
#ml #math #mlmath #probability #машинноеобучение
@bigdatai
YouTube
Обобщение и переобучение в машинном обучении. Машинное обучение полный курс. Урок 9
🚀 Обобщение — это способность модели правильно работать на новых, ранее не виденных данных.
Мы разберем:
- Обобщение
- Переобучения и его причины
- Методы борьбы с переобучением
🔥 https://www.tgoop.com/+CTH__X6H21JjMWJi - в нашем телеграм канале собрана вся база…
Мы разберем:
- Обобщение
- Переобучения и его причины
- Методы борьбы с переобучением
🔥 https://www.tgoop.com/+CTH__X6H21JjMWJi - в нашем телеграм канале собрана вся база…
Forwarded from Machinelearning
Gated DeltaNet - экспериментальная архитектура, разработанная NVIDIA для управления памятью в контексте линейных трансформеров, которая может решить проблемы с забыванием в моделях, обрабатывающих длинные последовательности данных.
Gated DeltaNet предлагает использовать одновременно дельта-правило и гейтинг. Дельта-правило обновляет память модели, заменяя устаревшую информацию на новую, а механизм гейтинга удаляет ненужную информацию из памяти, чтобы она не мешала модели работать эффективно.
Архитектура Gated DeltaNet была разработана на основе алгоритма, который параллелит вычисления дельта-правила с использованием представления WY и оптимизирует работу с GPU на уровне тензорных ядер.
Перфоманс-тестирование Gated DeltaNet проводилось на бенчмарках языкового моделирования, ризонинга, контекстного извлечения, экстраполяции длины и понимания объемного контекста.
Модель Gated DeltaNet превзошла Mamba2 и DeltaNet на всех этих тестах. Например - улучшенная точность на задачах S-NIAH-2 и S-NIAH-3, где Gated DeltaNet показала более эффективное управление памятью по сравнению с DeltaNet и Mamba2 и превосходство в задачах ризонинга.
Гибридные архитектуры, сочетающие слои Gated DeltaNet с вниманием скользящего окна или слоями Mamba2 повысили эффективность обучения и производительность моделей.
Тестовые
GatedDeltaNet-H1 и GatedDeltaNet-H2
дали еще более высокие результаты, используя комбинации Gated DeltaNet + SWA и Mamba2 + Gated DeltaNet + SWA соответственно.Gated DeltaNet показала самые низкие показатели перплексии при экстраполяции на длинные последовательности до 20 тыс. токенов и продемонстрировала превосходные способности в извлечении информации, обучении в контексте и отслеживании состояния в задачах LongBench.
🔸Практическая реализация обучения Gated DeltaNet на Pytorch доступна в репозитории на Github
📌Лицензирование:
🟢Некоммерческое использование: Nvidia Source Code License-NC
🟠Коммерческое использование: по запросу через форму NVIDIA Research Licensing
🟡Arxiv
🟡GitHub
@ai_machinelearning_big_data
#AI #ML #LLM #NVIDIA #GatedDeltaNet
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
💥Релиз Qwen2.5-1M!
Теперь модель поддерживает контекст длиной 1 МИЛЛИОН ТОКЕН 🔥
⭐️ Доступны 2 модели: Qwen2.5-7B-Instruct-1M и Qwen2.5-14B-Instruct-1M.
Доступен подробный технический отчет о серии Qwen2.5-1M! 📊
📖 Технический отчет: https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-1M/Qwen2_5_1M_Technical_Report.pdf
📄 Блог: https://qwenlm.github.io/blog/qwen2.5-1m/
🚀 Потестировать можно здесь: https://chat.qwenlm.ai
🤗 Huggingface: https://huggingface.co/collections/Qwen/qwen25-1m-679325716327ec07860530ba
▪ Modelscope: https://modelscope.cn/collections/Qwen25-1M-d6cf9fd33f0a40
@bigdatai
Теперь модель поддерживает контекст длиной 1 МИЛЛИОН ТОКЕН 🔥
⭐️ Доступны 2 модели: Qwen2.5-7B-Instruct-1M и Qwen2.5-14B-Instruct-1M.
Доступен подробный технический отчет о серии Qwen2.5-1M! 📊
📖 Технический отчет: https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-1M/Qwen2_5_1M_Technical_Report.pdf
📄 Блог: https://qwenlm.github.io/blog/qwen2.5-1m/
🚀 Потестировать можно здесь: https://chat.qwenlm.ai
🤗 Huggingface: https://huggingface.co/collections/Qwen/qwen25-1m-679325716327ec07860530ba
▪ Modelscope: https://modelscope.cn/collections/Qwen25-1M-d6cf9fd33f0a40
@bigdatai
@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🐋 DeepSeek только что выпустила еще одну модель ИИ с открытым исходным кодом, Janus-Pro-7B.
Она мультимодальная и выигрывает у OpenAI DALL-E 3 и Stable Diffusion на бенчмарках GenEval и DPG-Bench.
https://huggingface.co/deepseek-ai/Janus-Pro-7B
@ai_machinelearning_big_data
#ai #deepseek #opensource #Janus
Она мультимодальная и выигрывает у OpenAI DALL-E 3 и Stable Diffusion на бенчмарках GenEval и DPG-Bench.
https://huggingface.co/deepseek-ai/Janus-Pro-7B
@ai_machinelearning_big_data
#ai #deepseek #opensource #Janus
Microsoft представляет: Chain-of-Retrieval Augmented Generation
- Наблюдается улучшение более чем на 10 баллов в оценке EM - Устанавливает новый уровень производительности SotA в широком спектре наукоемких задач
https://arxiv.org/abs/2501.14342
- Наблюдается улучшение более чем на 10 баллов в оценке EM - Устанавливает новый уровень производительности SotA в широком спектре наукоемких задач
https://arxiv.org/abs/2501.14342
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🤗 Inference Providers on the Hub!
С сегодняшнего дня вы можете получить доступ к тысячам моделей, таким как DeepSeek R1, Llama, Flux, Whisper и прямо из Hugging Face!
https://huggingface.co/blog/inference-providers
#huggingface #ml #providers
С сегодняшнего дня вы можете получить доступ к тысячам моделей, таким как DeepSeek R1, Llama, Flux, Whisper и прямо из Hugging Face!
https://huggingface.co/blog/inference-providers
#huggingface #ml #providers
✔ MM-IQ: крупнейший бенчмарк для абстрактного визуального мышления
- 2710 образцов
- три формата ввода, шесть конфигураций задач и восемь моделей рассуждений
- таблица лидеров для оценки мультимодальных моделей
https://huggingface.co/datasets/huanqia/MM-IQ
@bigdatai
- 2710 образцов
- три формата ввода, шесть конфигураций задач и восемь моделей рассуждений
- таблица лидеров для оценки мультимодальных моделей
https://huggingface.co/datasets/huanqia/MM-IQ
@bigdatai
🔥 WILDCHAT-50M: крупнейший открытый набор данных c чатов
- 125 млн+ стенограмм чатов
- 1 млн+ разговоров
- Создано на основе WildChat
- Используется для создания RE-WILD SFT
Один из лучших открытых бенчмарков данной категории.
https://huggingface.co/collections/nyu-dice-lab/wildchat-50m-679a5df2c5967db8ab341ab7
@bigdatai
- 125 млн+ стенограмм чатов
- 1 млн+ разговоров
- Создано на основе WildChat
- Используется для создания RE-WILD SFT
Один из лучших открытых бенчмарков данной категории.
https://huggingface.co/collections/nyu-dice-lab/wildchat-50m-679a5df2c5967db8ab341ab7
@bigdatai
@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
Реализация ИИ-ресерчера, который непрерывно ищет информацию по запросу пользователя, пока система не убедится, что собрала все необходимые данные.
Для этого он использует несколько сервисов:
- SERPAPI: Для выполнения поиска в Google.
- Jina: Для получения и извлечения содержимого веб-страниц.
- OpenRouter (модель по умолчанию: anthropic/claude-3.5-haiku): Взаимодействует с LLM для генерации поисковых запросов, оценки релевантности страниц и понимания контекста.
- Итеративный цикл исследования: Система итеративно уточняет свои поисковые запросы.
- Асинхронная обработка: Поиск, парсинг веб-страниц и оценка контекста - выполняются параллельно для повышения скорости.
- Фильтрация дубликатов: Агрегирует и дедуплицирует ссылки в каждом цикле, проверяя, что одна и та же информация не будет обработана дважды.
▪ Github
▪Google Colab
@ai_machinelearning_big_data
#opensource #llm #ai #ml #DeepResearcher
Please open Telegram to view this post
VIEW IN TELEGRAM
@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM