⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
Python: www.tgoop.com/pythonl
Linux: www.tgoop.com/linuxacademiya
Собеседования DS: www.tgoop.com/machinelearning_interview
Нерйросети www.tgoop.com/ai_machinelearning_big_data
C++ www.tgoop.com/cpluspluc
Docker: www.tgoop.com/DevopsDocker
Хакинг: www.tgoop.com/linuxkalii
Devops: www.tgoop.com/DevOPSitsec
Data Science: www.tgoop.com/data_analysis_ml
Javascript: www.tgoop.com/javascriptv
C#: www.tgoop.com/csharp_ci
Java: www.tgoop.com/javatg
Базы данных: www.tgoop.com/sqlhub
Python собеседования: www.tgoop.com/python_job_interview
Мобильная разработка: www.tgoop.com/mobdevelop
Golang: www.tgoop.com/Golang_google
React: www.tgoop.com/react_tg
Rust: www.tgoop.com/rust_code
ИИ: www.tgoop.com/vistehno
PHP: www.tgoop.com/phpshka
Android: www.tgoop.com/android_its
Frontend: www.tgoop.com/front
Big Data: www.tgoop.com/bigdatai
МАТЕМАТИКА: www.tgoop.com/data_math
Kubernets: www.tgoop.com/kubernetc
Разработка игр: https://www.tgoop.com/gamedev
Haskell: www.tgoop.com/haskell_tg
Физика: www.tgoop.com/fizmat
💼 Папка с вакансиями: www.tgoop.com/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: www.tgoop.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.tgoop.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.tgoop.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.tgoop.com/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: www.tgoop.com/memes_prog
🇬🇧Английский: www.tgoop.com/english_forprogrammers
🧠ИИ: www.tgoop.com/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://www.tgoop.com/addlist/BkskQciUW_FhNjEy
Python: www.tgoop.com/pythonl
Linux: www.tgoop.com/linuxacademiya
Собеседования DS: www.tgoop.com/machinelearning_interview
Нерйросети www.tgoop.com/ai_machinelearning_big_data
C++ www.tgoop.com/cpluspluc
Docker: www.tgoop.com/DevopsDocker
Хакинг: www.tgoop.com/linuxkalii
Devops: www.tgoop.com/DevOPSitsec
Data Science: www.tgoop.com/data_analysis_ml
Javascript: www.tgoop.com/javascriptv
C#: www.tgoop.com/csharp_ci
Java: www.tgoop.com/javatg
Базы данных: www.tgoop.com/sqlhub
Python собеседования: www.tgoop.com/python_job_interview
Мобильная разработка: www.tgoop.com/mobdevelop
Golang: www.tgoop.com/Golang_google
React: www.tgoop.com/react_tg
Rust: www.tgoop.com/rust_code
ИИ: www.tgoop.com/vistehno
PHP: www.tgoop.com/phpshka
Android: www.tgoop.com/android_its
Frontend: www.tgoop.com/front
Big Data: www.tgoop.com/bigdatai
МАТЕМАТИКА: www.tgoop.com/data_math
Kubernets: www.tgoop.com/kubernetc
Разработка игр: https://www.tgoop.com/gamedev
Haskell: www.tgoop.com/haskell_tg
Физика: www.tgoop.com/fizmat
💼 Папка с вакансиями: www.tgoop.com/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: www.tgoop.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.tgoop.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.tgoop.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.tgoop.com/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: www.tgoop.com/memes_prog
🇬🇧Английский: www.tgoop.com/english_forprogrammers
🧠ИИ: www.tgoop.com/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://www.tgoop.com/addlist/BkskQciUW_FhNjEy
🎬 FunClip — open-source ИИ для автоматического монтажа видео
Alibaba представила любопытный инструмент для автоматической нарезки видео с помощью ИИ. FunClip использует speech-to-text модели, чтобы преобразовывать речь в текст с таймкодами, а затем вырезать нужные фрагменты.
Система поддерживает кастомизацию: можно задавать ключевые слова для улучшения распознавания или выбирать реплики конкретного человека. В последней версии добавили LLM-фичи — например, GPT и Qwen могут анализировать субтитры и предлагать моменты для монтажа.
🤖 GitHub
@bigdatai
Alibaba представила любопытный инструмент для автоматической нарезки видео с помощью ИИ. FunClip использует speech-to-text модели, чтобы преобразовывать речь в текст с таймкодами, а затем вырезать нужные фрагменты.
Система поддерживает кастомизацию: можно задавать ключевые слова для улучшения распознавания или выбирать реплики конкретного человека. В последней версии добавили LLM-фичи — например, GPT и Qwen могут анализировать субтитры и предлагать моменты для монтажа.
🤖 GitHub
@bigdatai
👍4❤2
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Transformer Lab — персональная лаборатория для работы с LLM прямо на ноутбуке или сервере!
▪️ Один бинарник — скачивай, запускай, дообучай и сравнивай модели (Llama 3, Mistral, Gemma, Qwen, Phi 4 и сотни других) в пару кликов.
▪️ Поддержка движков Transformers, vLLM, Llama CPP и MLX для Apple Silicon.
▪️ Fine-tune, RLHF (DPO / ORPO / SIMPO), встроенный RAG-конструктор и галерея датасетов Hugging Face.
▪️ Быстрые бенчмарки, чат-UI и REST API для прототипов.
▪️ Работает на Windows, macOS (M-чипы full power!) и Linux; можно разделять UI и backend.
▪️ Полностью open-source (AGPL-3.0) — подключай плагины или пиши свои.
💻 Проверь репозиторий: github.com/transformerlab/transformerlab-app
Собери свою LLM-песочницу и ускорь эксперименты сегодня!
https://github.com/transformerlab/transformerlab-app
▪️ Один бинарник — скачивай, запускай, дообучай и сравнивай модели (Llama 3, Mistral, Gemma, Qwen, Phi 4 и сотни других) в пару кликов.
▪️ Поддержка движков Transformers, vLLM, Llama CPP и MLX для Apple Silicon.
▪️ Fine-tune, RLHF (DPO / ORPO / SIMPO), встроенный RAG-конструктор и галерея датасетов Hugging Face.
▪️ Быстрые бенчмарки, чат-UI и REST API для прототипов.
▪️ Работает на Windows, macOS (M-чипы full power!) и Linux; можно разделять UI и backend.
▪️ Полностью open-source (AGPL-3.0) — подключай плагины или пиши свои.
💻 Проверь репозиторий: github.com/transformerlab/transformerlab-app
Собери свою LLM-песочницу и ускорь эксперименты сегодня!
https://github.com/transformerlab/transformerlab-app
👍7❤4🔥2
Forwarded from Machinelearning
🦾 Berkeley Humanoid Lite — открытый человекоподобный робот
Калифорнийский университет Беркли представил проект Humanoid Lite — результат многолетних исследований и экспериментов по созданию простых в производстве человекоподобных роботов.
Платформа полностью придерживается принципов Open Hardware: в ней используются свободно распространяемое ПО, серийные комплектующие, доступные в розничной продаже, а также детали, напечатанные на 3D-принтере.
🌟 100 % open-source под MIT-лицензией: прошивки, схемы, BOM, STL-модели, RL-контроллеры
✔️ Open Hardware: доступные в рознице электро- и мехкомпоненты, детали печатаются на обычном FDM-принтере
➡️ Итоговая стоимость сборки — примерно 5 000 USD
⭐️ Модульная конструкция: легко превращается в квадропода или «кенавроподобного» робота
➡️ Экосистема: Isaac Lab / Isaac Sim / MuJoCo, телеметрия через SteamVR-контроллеры
⏩ Что доступно:
- Исходный код робота на C++ и Python
- Модели машинного обучения для контроллера движений
- Чертежи пластиковых деталей
- Полный список комплектующих с ссылками на покупку
- Пошаговый сборочный план
- Симуляционные окружения для тренировки и запуска робота
🌟 Что робот умеет уже сейчас
- локомоция: RL-контроллер приводит в заданную точку
- телеприсутствие: человек управляет манипулятором через VR-контроллеры
- навигация: экспериментальные алгоритмы обхода препятствий
- поддержка мелкой моторики
🔥 Как удалось удешевить:
- пластиковые шестерни, напечатанные на 3D-принтере
- циклоидные редукторы, повышающие надёжность пластика
- использование типовых драйверов и контроллеров без кастомных плат
*Clone → Print → Build → Hack!* 🤓
🔜 Проект
🔜 Код
🔜 Схемы
@ai_machinelearning_big_data
#robots #ai #ml #opensource
Калифорнийский университет Беркли представил проект Humanoid Lite — результат многолетних исследований и экспериментов по созданию простых в производстве человекоподобных роботов.
Платформа полностью придерживается принципов Open Hardware: в ней используются свободно распространяемое ПО, серийные комплектующие, доступные в розничной продаже, а также детали, напечатанные на 3D-принтере.
⭐️ Модульная конструкция: легко превращается в квадропода или «кенавроподобного» робота
- Исходный код робота на C++ и Python
- Модели машинного обучения для контроллера движений
- Чертежи пластиковых деталей
- Полный список комплектующих с ссылками на покупку
- Пошаговый сборочный план
- Симуляционные окружения для тренировки и запуска робота
- локомоция: RL-контроллер приводит в заданную точку
- телеприсутствие: человек управляет манипулятором через VR-контроллеры
- навигация: экспериментальные алгоритмы обхода препятствий
- поддержка мелкой моторики
- пластиковые шестерни, напечатанные на 3D-принтере
- циклоидные редукторы, повышающие надёжность пластика
- использование типовых драйверов и контроллеров без кастомных плат
*Clone → Print → Build → Hack!* 🤓
@ai_machinelearning_big_data
#robots #ai #ml #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤3🔥2
Forwarded from Machinelearning
Xiaomi выпустила в опенсорсный релиз MiMo-7B — набор языковых моделей, созданных для решения сложных задач, от математики до генерации кода.
Несмотря на скромные 7 млрд. параметров, модель демонстрирует результаты, превосходящие 32B-конкурентов, разрушая стереотипы о зависимости качества от размера.
Создание MiMo началось с предтрейна на 25 трлн. токенов, где акцент был на повышении плотности логических паттернов.
Для этого разработчики пересмотрели обработку данных: улучшили извлечение математических формул и блоков кода из веб-страниц, добавили синтетические данные, сгенерированные топовыми ризонинг-моделями, и все это обработали уникальной стратегией смешивания.
На первых этапах доля STEM-контента достигала 70%, а на финальном — добавили синтетику и расширили контекст до 32K токенов.
Обучение с подкреплением на стадии посттренинга проводили на массиве из 130 тыс. задач, где каждая проверялась автоматически. Чтобы избежать reward hacking, использовали только rule-based награды.
Для сложных задач по программированию ввели систему частичных баллов (как на олимпиадах по информатике) - даже если решение не идеально, модель получает feedback за пройденные тесты. А чтобы RL не застревал на простых примерах, добавили ресэмплинг: 10% данных брали из пула уже решенных задач, балансируя эффективность и стабильность обучения.
Результаты бенчмарков: на LiveCodeBench v6 MiMo-7B-RL набрала 49.3%, обойдя QwQ-32B на 10 пунктов, а на AIME 2025 — 55.4%, оставив позади OpenAI o1-mini. При этом базовая версия модели уже показывала 75.2% на BBH, что выше аналогов своего класса.
⚠️ Разработчики рекомендуют использовать для локального инференса их форк vLLM , он поддерживает MTP (Multiple-Token Prediction), но и на HF Transformers инференс тоже работает.
@ai_machinelearning_big_data
#AI #ML #LLM #RL #Xiaomi #MiMo
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍2
Основная цель: оценить, насколько эффективно LLM могут поддерживать задачи в области глобального здравоохранения, включая диагностику, лечение, коммуникацию с пациентами и принятие решений в условиях ограниченных ресурсов.
https://research.google/blog/benchmarking-llms-for-global-health/
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥8❤4👍4
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Ideogram представил масштабное обновление своей нейросети для генерации изображений. Версия 3.0 создаёт более фотореалистичные картинки, точнее понимает запросы и предлагает вдвое больше стилей. Теперь можно загрузить до 3-х референсов, чтобы задать стиль генерации, или выбрать готовый из библиотеки.
Новые инструменты: Magic Fill и Extend. Первый позволяет менять или добавлять элементы в готовом изображении, а второй — расширять его за рамки исходного кадра. Для разработчиков открыли API с текстовой генерацией, редактированием, заменой фона и другими функциями. Интегрировать Ideogram 3.0 можно через партнерские платформы: Picsart, Freepik, Replicate и другие.
Ideogram в X (ex-Twitter)
Midjourney тестирует новую функцию, Omni-Reference, которая позволяет тонко настраивать визуальные элементы в создаваемых изображениях. В отличие от старого Character Reference (v6), система теперь поддерживает не только персонажей, но и отдельные объекты — например, можно указать: «Добавь именно этот меч в сцену».
Omni-Reference доступен в веб-интерфейсе сервиса (перетаскивание изображения в зону «omni-reference») или в Discord через параметр
--oref
с URL. Силу влияния reference регулирует параметр --ow
(0–1000): низкие значения подходят для стилизации, а высокие — для сохранения деталей вроде лица или одежды.Midjourney в Discord
Apple совместно с Anthropic готовит обновление Xcode с интеграцией Claude Sonnet. По данным Bloomberg, внутренняя версия уже тестируется сотрудниками: разработчики могут запрашивать код через чат, инспектировать интерфейсы и исправлять ошибки с помощью ИИ. Это ускорит процессы разработки, но пока неясно, когда инструмент станет доступен публично.
Ранее Apple анонсировала Swift Assist, однако проект застопорился из-за частых галлюцинаций ИИ. Сотрудничество с Anthropic должно решить эти проблемы.
macrumors.com
Некоммерческая организация FutureHouse, поддержанная Эриком Шмидтом, запустила платформу с четырьмя ИИ-агентами: Crow, Falcon, Owl и Phoenix. Они помогают анализировать научную литературу, планировать эксперименты и искать данные в специализированных базах. По словам разработчиков, их система использует открытые научные работы и многоэтапный анализ с «прозрачной логикой».
FutureHouse предупреждает, что Phoenix, отвечающий за химические эксперименты, может выдавать некорректные результаты и призывает пользователей делиться обратной связью для доработки.
futurehouse.org
Специалисты из Пенсильванского университета представили революционный фотонный чип, способный обучать нейросети с помощью света. Технология не только ускоряет процесс в разы, но и резко снижает энергозатраты, открывая путь к полностью оптическим вычислениям. В отличие от традиционных электронных чипов, здесь данные обрабатываются световыми импульсами, а не электричеством — это позволяет выполнять сложные нелинейные операции, критичные для глубокого обучения.
Основа инновации — управление светом через специальный полупроводниковый материал. Два луча («signal» и «pump») взаимодействуют, меняя свойства материала в реальном времени. Это дает возможность перепрограммировать чип без изменения его структуры, достаточно настроить параметры «pump»-луча. В тестах система показала 97% точности на задачах с нелинейными границами решений, обойдя цифровые аналоги по эффективности.
Уже сейчас 4 оптических соединения на чипе заменяют 20 электронных, а в будущем технология может масштабироваться для обучения LLM.
scitechdaily.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤2🔥2
Всего 9 категорий: бизнес, карьера (подходит для создания резюме), креатив, образование, здоровье, маркетинг, технологии, личный помощник и универсальные.
Сохраняйте, чтобы всегда под рукой. Ускоряйте работу и повышайте свою эффективность!
https://www.promptly.fyi/library
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥5❤3👍2
🔥 Burn — Rust-фреймворк для глубокого обучения с акцентом на производительность. В отличие от монолитных решений вроде PyTorch, Burn изначально заточен под кросс-платформенное выполнение: одна и та же модель может работать на NVIDIA/AMD GPU через CUDA/ROCm, на Apple-чипах через Metal и даже в браузере через WebGPU.
Главная фишка проекта в модульной архитектуре с подключаемым бэкендом и автоматической оптимизацией вычислений. Например, система умеет объединять операции ядер без ручного вмешательства. Для исследователей есть встроенный дашборд для мониторинга обучения, а для продакшна простая конвертация в ONNX.
🤖 GitHub
@bigdatai
Главная фишка проекта в модульной архитектуре с подключаемым бэкендом и автоматической оптимизацией вычислений. Например, система умеет объединять операции ядер без ручного вмешательства. Для исследователей есть встроенный дашборд для мониторинга обучения, а для продакшна простая конвертация в ONNX.
🤖 GitHub
@bigdatai
❤3🔥1
В рамках 100 Zeros уже поддержан инди-хоррор "Cuckoo", а также запущена программа "AI On Screen" для создания короткометражных фильмов об ИИ, некоторые из которых могут перерасти в полнометражные проекты. Интересно, что Google не планирует использовать YouTube в качестве основной платформы распространения; вместо этого компания намерена продавать проекты традиционным студиям и стриминговым сервисам, таким как Netflix.
Эта стратегия отражает стремление Google интегрировать свои продукты в массовую культуру и укрепить позиции на рынке технологий, конкурируя с такими гигантами, как Apple и OpenAI.
https://www.businessinsider.com/google-tv-movie-hollywood-boost-tech-image-hundred-zeros-2025-5
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤2