Telegram Web
Forwarded from Machinelearning
🌟 LLaMA-Omni: Речевое управление LLM

LLaMA-Omni - модель, построенная на основе Llama-3.1-8B-Instruct, которая поддерживает голосовое взаимодействие с низкой задержкой ответа и высоким качеством синтеза аудио, одновременно генерируя текстовые и речевые ответы на основе голосовых инструкций.

LLaMA-Omni не требует транскрипции речи, напрямую передавая адаптированное речевое представление в LLM. LLM генерирует текстовый ответ, и, параллельно декодер речи генерирует соответствующие дискретные речевые единицы, используя скрытые состояния инференса LLM. Применение этой конструктивной особенности значительно сокращает задержку ответа до в 226 мс на chunk-size размерности 10.

Для установки и локального запуска понадобятся GPU => 20GB и набор :

🟢Модель Llama-3.1-8B-Omni
🟢Модель Whisper-large-v3;
🟠HiFi-GAN вокодер;
🟠Тулкит Fairseq;
🟠Flash-attention.

⚠️ Примечания:

🟠Gradio плохо воспроизводит потоковое аудио, поэтому автовоспроизведение в нем отключено;

🟠Чтобы запустить СLI-инференс локально, организуйте файлы речевых инструкций в соответствии с форматом в omni_speech/infer/examples, а затем обратитесь скрипту omni_speech/infer/run.sh.

▶️Установка :

# Clone repository 
git clone https://github.com/ictnlp/LLaMA-Omni
cd LLaMA-Omni

# Install packages
conda create -n llama-omni python=3.10
conda activate llama-omni
pip install pip==24.0
pip install -e .

# Install fairseq
git clone https://github.com/pytorch/fairseq
cd fairseq
pip install -e . --no-build-isolation

# Install flash-attention
pip install flash-attn --no-build-isolation


▶️ Выполните команды, описанные в разделах Quick Start и Gradio Demo. Интерфейс будет доступен в вашем браузере по адресу http://localhost:8000/


📌Лицензирование : Apache 2.0 License.


🟡Модель
🟡Arxiv
🖥Github


@ai_machinelearning_big_data

#AI #ML #LLM #Llama #SpeechToSpeech
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
2
This media is not supported in your browser
VIEW IN TELEGRAM
👀 ReshotAI — это крутая нейросеть для редактирования фотографий всего за несколько кликов.

С её помощью можно легко добавить улыбку, изменить положение глаз и рта.

Фотографии теперь всегда будут получаться идеальными.

📌 Попробовать

#nn #soft

@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7👍62
cookbook.pdf
642.4 KB
✍️ Гайд по тензорам

Книга- гайд, в которое есть все, что нужно знать о тензорах.

Тензор — это контейнер, в котором могут храниться данные в N измерениях. Часто и ошибочно используемые взаимозаменяемо с матрицей (которая, в частности, является двумерным тензором), тензоры представляют собой обобщения матриц на N -мерное пространство.

🔗 Ссылка

@bigdatai
🔥93👍2❤‍🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Как генерировать сложные 3D-сцены с высокой реалистичностью?

LT3SD разлагает 3D-сцены на латентные древовидные объекты, а диффузия на латентных деревьях обеспечивает бесшовный бесконечный синтез 3D-сцен!

https://quan-meng.github.io/projects/lt3sd/

@bigdatai
👍4🔥32
⚡️ Vchitect-2.0, модель генерации видео 2B, поддерживающая разрешение до 720x480 и генерацию 5-20 секунд.

👉 Сайт: https://vchitect.intern-ai.org.cn
👉 Код: https://github.com/Vchitect/Vchitect-2.0
👉 Демо: https://huggingface.co/spaces/Vchitect/Vchitect-2.0

@bigdatai
👍42
Forwarded from Machinelearning
💊 Machine Learning: Медицинский дайджест за период 7.09 - 14.09 2024 года

🟩 BrainWave: модель для анализа сигналов головного мозга.

BrainWave – модель, обученная на 40 000 часах инвазивных (iEEG) и неинвазивных (EEG) записей мозговой активности 16 тыс пациентов. Это первая фундаментальная модель для анализа сигналов мозга, объединяющая данные из разных источников.

🟩 DS-ViT: Visual Transformer для ранней диагностики болезни Альцгеймера.

Dual-Stream Vision Transformer (DS-ViT) -метод, который объединяет сегментацию и классификацию для улучшения точности обучения моделей, обрабатывающих снимки МРТ головного мозга.

Он использует FastSurfer в качестве обучающей модели для детальной сегментации для обучаемой ViT-модели ADAPT (модель диагностики болезни Альцгеймера).

🟩 EyeCLIP: фундаментальная VLM для офтальмологических изображений.

EyeCLIP, визуально-языковая фундаментальная модель (VLM), обученная на более чем 2,77 миллионах мультимодальных офтальмологических изображений и 11 180 текстовых описаний от 128 000 пациентов.

Модель может выполнять задачи классификации заболеваний глаз, прогнозирование системных заболеваний, поиск информации по изображению и тексту и ответы на вопросы, связанные с изображениями патологии глаз.

🟩 Возможности SAM для сегментации опухолей мозга.

В исследовании изучается эффективность SAM для сегментации опухолей головного мозга на основе набора данных BraTS2019, который содержит изображения четырех модальностей (T1, T1ce, T2, FLAIR). Авторы оценивают эффективность SAM с использованием двух типов маркирования - точки и рамки и анализируют влияние количества маркирования на точность сегментации.

Результаты показывают, что SAM с маркировкой в виде рамок превосходит по точности маркировку в виде точек. Увеличение количества точек улучшает производительность до определенного предела, после которого точность начинает снижаться. Комбинирование точечных и рамочных маркировок позволяет добиться наилучших результатов.

🟩 MEDIC: Оценка языковых моделей для клинического применения.

MEDIC использует пять ключевых измерений клинической компетентности: медицинское мышление, этические аспекты и предвзятость, понимание данных и языка, контекстное обучение и клиническая безопасность.

Оценка проводится тестированием на задачах: ответы на закрытые и открытые вопросы, суммирование медицинских текстов и создание клинических заметок. Для оценки безопасности моделей используется набор данных Med-Safety, содержащий 900 сценариев с потенциально опасными медицинскими запросами.

Приложения с использованием языковых моделей.


🟪 KARGEN: генерация отчетов рентгенографии грудной клетки с использованием графа знаний и больших языковых моделей.

KARGEN - фреймворк, объединяющий большие языковые модели с графом знаний, специально разработанным для анализа рентгенограмм грудной клетки.

Архитектура KARGEN: энкодеры визуальных признаков (Swin Transformer), модуль слияния (element-wise fusion + modality-wise fusion) и генератор отчетов.

Энкодер визуальных признаков извлекает признаки из рентгеновского изображения, граф знаний, построенный на основе взаимосвязей между 14 заболеваниями из набора данных Chexpert, используется для извлечения признаков, связанных с этими заболеваниями.

🟪 i-MedRAG: итеративный поиск информации для ответов на сложные медицинские вопросы.

i-MedRAG - архитектура RAG, предназначенная для ответов на сложные медицинские вопросы, требующие многоэтапных рассуждений. В отличие от традиционных RAG-систем, i-MedRAG использует итеративный подход к поиску информации.

Методики и техники

🟦 Автоматическая сегментация клеток с использованием UNet в DeepChem.


В статье описан эксперимент создания​​ интеграции модели UNet, архитектуры, известной своей эффективностью в задачах сегментации изображений, с python библиотекой DeepChem, предназначенной для машинного и глубокого обучения в биологии и химии, для задач автоматической сегментации клеток на различных наборах данных микроскопических изображений.

🔥Полный дайджест

@ai_machinelearning_big_data

#news #ai #ml #medtech
👍31
Узнайте, как обучать и развертывать модели с помощью контейнеров Deep Learning Containers.

https://huggingface.co/docs/google-cloud/index

@bigdatai
👍31🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
Красивая визуализация нейронной сети, обученной на MNIST

Нейрона была написана с нуля на языке Odin и визуализирована с помощью Raylib.

https://github.com/bones-ai/odin-mnist-nn

@bigdatai
11❤‍🔥5🥰1
ИТМО назвал лидеров развития Open Source в России

Лидером среди российских компаний стал Яндекс, за ним — Сбер и Т-банк. Компании оценивались по количеству опенсорс-проектов, их популярности, качеству репозиториев и активности контрибьюторов.

Среди ключевых решений лидера рейтинга: CatBoost (библиотека для градиентного бустинга), YTsaurus (платформа для работы с большими данными) и YDB (распределённая SQL-база данных).

Ключевые выводы исследования:
— Большинство компаний ориентируются не только на внутренний, но и на международный рынок;
— GitHub остаётся стандартом, но растёт интерес к альтернативам (Gitee, GitVerse);
— Open source объединяет специалистов со всего мира;
— Конкуренция постепенно уступает место совместному развитию отрасли;
— Для развития опенсорс-проектов необходима финансовая поддержка;
— Несмотря на рост ИИ, роль человека в опенсорсе остаётся ключевой.
👍12👎2
Mistral выпустили улучшенную модель Small 22B - Многоязычную модель с контекстом 128K контекст

Промежуточная модель между Mistral NeMo 12B и Mistral Large 123B.

> Параметры 22B
>  Поддерживает вызов функций
> Длина контекста 128k
> Доступны веса

pip install --upgrade vllm

🤗Веса: https://huggingface.co/mistralai/Mistral-Small-Instruct-2409

@bigdatai
👍61🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
Phidias

Генеративная модель для создания 3D-контента из текста, изображения и 3D-условий с помощью диффузии с добавлением ссылок

https://huggingface.co/papers/2409.11406

@bigdatai
👍31🔥1
🎮 GTA-Human II

Проект, который создан на основе GTA-V для оценки позы и движения человека.

В нем представлены сцены с участием нескольких человек с аннотациями.

В дополнение к цветным последовательностям изображений также предоставляются трехмерные ограничивающие рамки и обрезанные облака точек (созданные на основе синтетических изображений).

страница проекта: https://caizhongang.com/projects/GTA-Human/gta-human_v2.html

@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
4👏2🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
Разработчики Kling AI представили новый инструмент Motion Brush, который позволяет анимировать отдельные объекты в видео. Пользователи могут загружать изображения и задавать пути движения, просто нарисовав траекторию ✍️. Это дает возможность точно управлять движением до шести элементов одновременно, что делает видео более динамичными и увлекательными 🎥.

Среди ключевых функций Kling AI 1.5 — поддержка 1080p HD для улучшенного качества изображений и возможность комбинирования статических и анимированных объектов. Это позволяет авторам фиксировать определенные области, предотвращая нежелательные движения в финальном видео 🌟.

Kling Motion Brush — это революция в создании видео, открывающая новые горизонты для контент-креаторов! 🚀

Пробуем здесь.

#KlingAI #MotionBrush #AI #VideoCreation #Animation #DigitalArt

@bigdatai
🔥101👍1👎1🤔1👌1
This media is not supported in your browser
VIEW IN TELEGRAM
3DTopia-XL GenAI Foundation

"3DTopia-XL", мощный трансформер создания 3D-PBR-объектов.

- Проект: https://3dtopia.github.io/3DTopia-XL/
- Код: https://github.com/3DTopia/3DTopia-XL
- Демо : https://huggingface.co/spaces/FrozenBurning/3DTopia-


@bigdatai
👍31
Большинство моделей от Mistral теперь доступны бесплатно по API 😱

Что за аттракцион невиданной щедрости? Вероятно, ваши запросы будут использованы для обучения новых моделей (хотя это не точно).

VPN не требуется, карта не нужна. Пользуйтесь!

@data_analysis_ml
👍7
⚡️ Шпаргалка по техникам регуляризации в машинном обучении

@bigdatai
👍6🔥3👌1
2025/07/09 02:41:51
Back to Top
HTML Embed Code: