Telegram Web
🧠 Как оживить open-source LLM без дообучения?

Большинство открытых языковых моделей "замерзают" во времени: они не умеют гуглить, не могут обновляться и, как следствие, проваливаются на свежих научных задачах.

📄 Новый подход — X‑Master

Он превращает любую LLM в агента с доступом к коду, вебу и самокритике, не изменяя веса модели.

💡 Как это работает:

– Модель может вставить Python-код прямо в ответ
– Код выполняется в песочнице, результат возвращается в чат
– Это позволяет модели использовать «внешнюю память»: веб-скрапинг, вычисления, даже вызов инструментов

Чтобы избежать случайных ошибок, авторы запускают 5 Solver-клонов, а затем роли Critic → Rewriter → Selector доводят ответ до ума.

Этот «поиск → чистка» напоминает reinforcement rollouts, но не требует переобучения.

📈 Результат:
– DeepSeek-R1 на задаче «Humanity’s Last Exam»: с 17.7% до 32.1%
– Обходит закрытые модели на сложном биотесте на +5 пунктов

💥 И всё это — без дообучения. Просто обёртка.

Промпты, sandbox, и немного здравого смысла — и ваша модель снова в игре.

arxiv.org/abs/2507.05241

@data_analysis_ml
14👍7🔥6
⚡️ Учёные нашли способ сделать электронику в 1000 раз быстрее

Американские исследователи сделали прорыв в управлении квантовыми материалами. Они научились переключать 1T-TaS₂ — особый кристалл — между состояниями изолятора и проводника при обычных температурах и на стабильное время.

Ключ к переключению — метод thermal quenching
Материал реагирует на свет, изменяя свои электронные свойства
Работает как транзистор, но в разы быстрее и без кремния
Главное: переключение обратимое и мгновенное

💡 Почему это важно:

Такие материалы способны заменить традиционные транзисторы, которые уже упёрлись в физические ограничения кремния. Это открывает путь к:
- сверхбыстрым процессорам
- минимальным размерам чипов
- новой архитектуре вычислений

Если технология масштабируется — это будет шаг к новой квантовой электронике, где компьютеры станут быстрее не на 20%, а в сотни раз.

Источник: https://sciencealert.com/quantum-breakthrough-could-make-your-devices-1000-times-faster


@data_analysis_ml
👍14🔥74🤯2
Кто создает будущее: исследователи или бизнес?

Дискуссия с экспертами в области искусственного интеллекта:
🔶 Иван Оселедец, генеральный директор института AIRI
🔶 Андрей Рыбинцев, старший директор по ИИ в Авито

Модератор: Анастасия Мануйлова, обозреватель «Коммерсантъ» — эксперт в сфере социально-экономических трансформаций общества.

📅 17 июля, 19:00
📍 офис Авито в Москве и онлайн
➡️ заявка на участие по
ссылке

Авито приглашает студентов и исследователей на дискуссию о развитии карьеры и выборе пути в сфере ИИ. А после паблик-тока — на неформальный вечер с экспертами, где участники смогут задать вопросы и наладить полезные контакты.

Эксперты обсудят:
- Что дает наука бизнесу и может ли современный технологический сектор развиваться без фундаментальных исследований?
- Как происходит трансфер технологий в области ИИ из науки в коммерческий сектор и обратно?
- Как начинающему специалисту выбрать между академической карьерой и работой в бизнесе?
- Какие возможности открываются для молодых специалистов от сотрудничества науки и бизнеса?

Приглашаем для полезного нетворкинга, новых знакомств и возможности получить ответы на ваши вопросы напрямую от экспертов рынка!

Подать заявку на участие можно по ссылке – места ограничены, участники будут подтверждены исходя из темы дискуссии. Для подтверждения придет приглашение на почту. А все желающие смогут следить за трансляцией онлайн.
4
🎥 Making Flux Run Fast — оптимизация инференса PyTorch моделей

Как ускорить генерацию изображений с текстом до менее чем полсекунды? Joel Schlosser из PyTorch Core показывает, как это сделать с помощью:

- torch.compile — ускорение инференса без изменения модели
- torch.export — подготовка модели к компиляции и интеграции
- torchao — библиотека для квантования, критично важная для скорости

Эти техники не только улучшают Flux, но универсальны и легко применимы к любым трансформерным моделям.

📺 Видео — часть серии PyTorch Compiler Series, где команда делится советами, лайфхаками и внутренностями оптимизирующего стека PyTorch.

🔗 Смотреть: https://www.youtube.com/watch?v=VNYBgqGQ98E
6👍2🔥1
🎓 Фанфакт у статьи Google’s Gemini 2.5 № arXiv:2507.06261 — 3295 авторов!

https://arxiv.org/abs/2507.06261
9👍3🔥3
🍏 Apple всерьёз задумалась о покупке Mistral — Bloomberg / Марк Гурман

По информации Bloomberg, Apple серьёзно рассматривает покупку французского стартапа Mistral AI, чтобы наконец войти в ИИ-гонку.

Это очень поздний шаг — но он показывает, насколько сильно Apple отстала от OpenAI, Google и даже xAI.

Пока другие выкатывают публичные LLM, мультимодальные ассистенты и интеграции в поиске, Apple остаётся в роли наблюдателя.

📌 Почему это важно:
- Mistral — один из главных open-source игроков на рынке ИИ (выпускают мощные LLM и Mixture of Experts-модели)
- У Apple пока нет ни собственной модели, ни сильной стратегии в области ИИ
- Приобретение Mistral может стать экстренной попыткой догнать конкурентов

Если сделка состоится — это будет крупнейший AI-манёвр Apple за всё время.

#Apple #Mistral #AI #LLM #ГонкаИИ

@data_analysis_ml
👍95🔥4🤔2
2025/07/14 00:36:04
Back to Top
HTML Embed Code: