Media is too big
VIEW IN TELEGRAM
⚡️ Математика машинного обучения.Базовые понятия тензорного исчисления. Урок 3
📌 Видео
📌 Урок 1 / Урок2
📌 Colab
@data_math
📌 Видео
📌 Урок 1 / Урок2
📌 Colab
@data_math
🔥6👍4❤2🥰1🤣1
Forwarded from Machinelearning
Интересная и познавательная статья разработчика Ивана Шубина о том, как он использовал матрицы для создания интерактивного редактора диаграмм Schemio.
Изначально, редактор позволял создавать простые фигуры и манипулировать ими, но с введением иерархии объектов возникла необходимость в сложных преобразованиях координат. Матрицы стали ключом к решению этой проблемы, позволяя эффективно управлять перемещением, вращением и масштабированием объектов.
Для преобразования глобальных и локальных координат между собой использовались матричные преобразования. Умножение матриц дало возможность комбинировать преобразования, а инверсия матрицы помогает переводить координаты из глобальных в локальные.
Иван подробно описывает, как матрицы помогают управлять поворотом и масштабированием объектов относительно опорной точки и как они используются при монтировании и демонтировании объектов, чтобы избежать нежелательных коллизий.
Таким образом, матричная математика стала решением для расширения возможностей редакторе Schemio.
#Math #LinearAlgebra #Webdev
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10❤2🔥2
Кодирование сигналов
1. Код Грея
2. Применение битов четности
3. Код Хемминга
4. Синхронизация с помощью избыточного кода
5. Скремблирование
6. Кодирование битов при последовательной передаче
7. Битстаффинг
8. Передатчик Манчестер II
9. Приемник кода Манчестер II
10. Двунаправленная передача импульсов по одной линии
#video #math
https://www.youtube.com/watch?v=C4cU4gldP5c&list=PL1VvMJF0dnhrcJZBhrAr8OWZKkCtbIBGQ&ab_channel=%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0%D0%B8%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%B8%D0%BA%D0%B0%D0%B4%D0%BB%D1%8F%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B8%D1%81%D1%82%D0%BE%D0%B2
@data_math
1. Код Грея
2. Применение битов четности
3. Код Хемминга
4. Синхронизация с помощью избыточного кода
5. Скремблирование
6. Кодирование битов при последовательной передаче
7. Битстаффинг
8. Передатчик Манчестер II
9. Приемник кода Манчестер II
10. Двунаправленная передача импульсов по одной линии
#video #math
https://www.youtube.com/watch?v=C4cU4gldP5c&list=PL1VvMJF0dnhrcJZBhrAr8OWZKkCtbIBGQ&ab_channel=%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0%D0%B8%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%B8%D0%BA%D0%B0%D0%B4%D0%BB%D1%8F%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B8%D1%81%D1%82%D0%BE%D0%B2
@data_math
❤10👍7👀1
Media is too big
VIEW IN TELEGRAM
🔥 Старейшая нерешённая задача
Существуют ли нечётные совершенные числа? Над этим вопросом уже 2000 лет бьются умнейшие математики.
Дерек Маллер с канала Veritasium опять решил сломать всем мозг и сделал получасовое видео об очередной математической жести. Удачи всем что-то понять, мы старались как могли. Было тяжело, мы устали. Кто-нибудь, заберите уже у Дерека книгу по теории чисел.
📌 источник
Существуют ли нечётные совершенные числа? Над этим вопросом уже 2000 лет бьются умнейшие математики.
Дерек Маллер с канала Veritasium опять решил сломать всем мозг и сделал получасовое видео об очередной математической жести. Удачи всем что-то понять, мы старались как могли. Было тяжело, мы устали. Кто-нибудь, заберите уже у Дерека книгу по теории чисел.
📌 источник
👍12❤7🔥3
Media is too big
VIEW IN TELEGRAM
⚡️ Тензорное разложении и его применении в машинном обучении. Урок 4
📌 Видео
📌 Урок 1 / Урок2 / Урок3
📌 Colab
@data_math
📌 Видео
📌 Урок 1 / Урок2 / Урок3
📌 Colab
@data_math
👍12❤4
ФИЗМАТ - топовый канал про Физику, Математику и ИТ.
С помощью картинок и шортcов даже новички разберутся в сложных концепциях и формулах.
Присоединяйтесь: www.tgoop.com/fizmat
С помощью картинок и шортcов даже новички разберутся в сложных концепциях и формулах.
Присоединяйтесь: www.tgoop.com/fizmat
👍6❤3🔥2
Forwarded from Machinelearning
QVQ-72B-Preview - экспериментальная VLM на основе Qwen2-VL-72B , разработанная Qwen, со способностями к аналитическому мышлению и новым уровнем когнитивных навыков.
Проведенная в Qwen оценка QVQ-72B-Preview на бенчмарках MMMU, MathVista, MathVision и OlympiadBench показала результат 70.3 на MMMU, 71.4 на MathVista, 35.9 в MathVision и 20.4 на наборе OlympiadBench, подчеркнув ее способность к комплексному пониманию и рассуждению в мультидисциплинарных задачах.
⚠️ Несмотря на высокие результаты, QVQ-72B-Preview - предварительная версия модели, которая имеет ограничения:
Неофициальные квантованные версии QVQ-72B-Preview в формате GGUF с диапазоном разрядностей от 1-bit (23.7GB) до 8-bit (77.26GB) и MLX-версии от mlx community в разрядностях от 4-bit до 16-bit.
@ai_machinelearning_big_data
#AI #ML #VLM #Qwen #Reasoning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2😁1
Media is too big
VIEW IN TELEGRAM
👍8❤3⚡2🔥1