๐ฌ๐ผ๐๐ฟ ๐จ๐น๐๐ถ๐บ๐ฎ๐๐ฒ ๐ฅ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ ๐๐ผ ๐๐ฒ๐ฐ๐ผ๐บ๐ฒ ๐ฎ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐!๐
Want to break into Data Analytics but donโt know where to start?
Follow this step-by-step roadmap to build real-world skills! โ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3CHqZg7
๐ฏ Start today & build a strong career in Data Analytics! ๐
Want to break into Data Analytics but donโt know where to start?
Follow this step-by-step roadmap to build real-world skills! โ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3CHqZg7
๐ฏ Start today & build a strong career in Data Analytics! ๐
Advanced AI and Data Science Interview Questions
1. Explain the concept of Generative Adversarial Networks (GANs). How do they work, and what are some of their applications?
2. What is the Curse of Dimensionality? How does it affect machine learning models, and what techniques can be used to mitigate its impact?
3. Describe the process of hyperparameter tuning in deep learning. What are some strategies you can use to optimize hyperparameters?
4. How does a Transformer architecture differ from traditional RNNs and LSTMs? Why has it become so popular in natural language processing (NLP)?
5. What is the difference between L1 and L2 regularization, and in what scenarios would you prefer one over the other?
6. Explain the concept of transfer learning. How can pre-trained models be used in a new but related task?
7. Discuss the importance of explainability in AI models. How do methods like LIME or SHAP contribute to model interpretability?
8. What are the differences between Reinforcement Learning (RL) and Supervised Learning? Can you provide an example where RL would be more appropriate?
9. How do you handle imbalanced datasets in a classification problem? Discuss techniques like SMOTE, ADASYN, or cost-sensitive learning.
10. What is Bayesian Optimization, and how does it compare to grid search or random search for hyperparameter tuning?
11. Describe the steps involved in developing a recommendation system. What algorithms might you use, and how would you evaluate its performance?
12. Can you explain the concept of autoencoders? How are they used for tasks such as dimensionality reduction or anomaly detection?
13. What are adversarial examples in the context of machine learning models? How can they be used to fool models, and what can be done to defend against them?
14. Discuss the role of attention mechanisms in neural networks. How have they improved performance in tasks like machine translation?
15. What is a variational autoencoder (VAE)? How does it differ from a standard autoencoder, and what are its benefits in generating new data?
Like if you need similar content ๐๐
1. Explain the concept of Generative Adversarial Networks (GANs). How do they work, and what are some of their applications?
2. What is the Curse of Dimensionality? How does it affect machine learning models, and what techniques can be used to mitigate its impact?
3. Describe the process of hyperparameter tuning in deep learning. What are some strategies you can use to optimize hyperparameters?
4. How does a Transformer architecture differ from traditional RNNs and LSTMs? Why has it become so popular in natural language processing (NLP)?
5. What is the difference between L1 and L2 regularization, and in what scenarios would you prefer one over the other?
6. Explain the concept of transfer learning. How can pre-trained models be used in a new but related task?
7. Discuss the importance of explainability in AI models. How do methods like LIME or SHAP contribute to model interpretability?
8. What are the differences between Reinforcement Learning (RL) and Supervised Learning? Can you provide an example where RL would be more appropriate?
9. How do you handle imbalanced datasets in a classification problem? Discuss techniques like SMOTE, ADASYN, or cost-sensitive learning.
10. What is Bayesian Optimization, and how does it compare to grid search or random search for hyperparameter tuning?
11. Describe the steps involved in developing a recommendation system. What algorithms might you use, and how would you evaluate its performance?
12. Can you explain the concept of autoencoders? How are they used for tasks such as dimensionality reduction or anomaly detection?
13. What are adversarial examples in the context of machine learning models? How can they be used to fool models, and what can be done to defend against them?
14. Discuss the role of attention mechanisms in neural networks. How have they improved performance in tasks like machine translation?
15. What is a variational autoencoder (VAE)? How does it differ from a standard autoencoder, and what are its benefits in generating new data?
Like if you need similar content ๐๐
Data Science Learning Plan
Step 1: Mathematics for Data Science (Statistics, Probability, Linear Algebra)
Step 2: Python for Data Science (Basics and Libraries)
Step 3: Data Manipulation and Analysis (Pandas, NumPy)
Step 4: Data Visualization (Matplotlib, Seaborn, Plotly)
Step 5: Databases and SQL for Data Retrieval
Step 6: Introduction to Machine Learning (Supervised and Unsupervised Learning)
Step 7: Data Cleaning and Preprocessing
Step 8: Feature Engineering and Selection
Step 9: Model Evaluation and Tuning
Step 10: Deep Learning (Neural Networks, TensorFlow, Keras)
Step 11: Working with Big Data (Hadoop, Spark)
Step 12: Building Data Science Projects and Portfolio
Data Science Interview Resources
๐๐
https://www.tgoop.com/DataScienceInterviews
Like for more ๐
Step 1: Mathematics for Data Science (Statistics, Probability, Linear Algebra)
Step 2: Python for Data Science (Basics and Libraries)
Step 3: Data Manipulation and Analysis (Pandas, NumPy)
Step 4: Data Visualization (Matplotlib, Seaborn, Plotly)
Step 5: Databases and SQL for Data Retrieval
Step 6: Introduction to Machine Learning (Supervised and Unsupervised Learning)
Step 7: Data Cleaning and Preprocessing
Step 8: Feature Engineering and Selection
Step 9: Model Evaluation and Tuning
Step 10: Deep Learning (Neural Networks, TensorFlow, Keras)
Step 11: Working with Big Data (Hadoop, Spark)
Step 12: Building Data Science Projects and Portfolio
Data Science Interview Resources
๐๐
https://www.tgoop.com/DataScienceInterviews
Like for more ๐
๐ ๐ฎ๐๐๐ฒ๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Master industry-standard tools like Excel, SQL, Tableau, and more.
Gain hands-on experience through real-world projects designed to mimic professional challenges
๐๐ถ๐ป๐ธ๐ :-
https://pdlink.in/4jxUW2K
All The Best ๐
Master industry-standard tools like Excel, SQL, Tableau, and more.
Gain hands-on experience through real-world projects designed to mimic professional challenges
๐๐ถ๐ป๐ธ๐ :-
https://pdlink.in/4jxUW2K
All The Best ๐
Important Topics to become a data scientist
[Advanced Level]
๐๐
1. Mathematics
Linear Algebra
Analytic Geometry
Matrix
Vector Calculus
Optimization
Regression
Dimensionality Reduction
Density Estimation
Classification
2. Probability
Introduction to Probability
1D Random Variable
The function of One Random Variable
Joint Probability Distribution
Discrete Distribution
Normal Distribution
3. Statistics
Introduction to Statistics
Data Description
Random Samples
Sampling Distribution
Parameter Estimation
Hypotheses Testing
Regression
4. Programming
Python:
Python Basics
List
Set
Tuples
Dictionary
Function
NumPy
Pandas
Matplotlib/Seaborn
R Programming:
R Basics
Vector
List
Data Frame
Matrix
Array
Function
dplyr
ggplot2
Tidyr
Shiny
DataBase:
SQL
MongoDB
Data Structures
Web scraping
Linux
Git
5. Machine Learning
How Model Works
Basic Data Exploration
First ML Model
Model Validation
Underfitting & Overfitting
Random Forest
Handling Missing Values
Handling Categorical Variables
Pipelines
Cross-Validation(R)
XGBoost(Python|R)
Data Leakage
6. Deep Learning
Artificial Neural Network
Convolutional Neural Network
Recurrent Neural Network
TensorFlow
Keras
PyTorch
A Single Neuron
Deep Neural Network
Stochastic Gradient Descent
Overfitting and Underfitting
Dropout Batch Normalization
Binary Classification
7. Feature Engineering
Baseline Model
Categorical Encodings
Feature Generation
Feature Selection
8. Natural Language Processing
Text Classification
Word Vectors
9. Data Visualization Tools
BI (Business Intelligence):
Tableau
Power BI
Qlik View
Qlik Sense
10. Deployment
Microsoft Azure
Heroku
Google Cloud Platform
Flask
Django
Like if you need similar content ๐๐
[Advanced Level]
๐๐
1. Mathematics
Linear Algebra
Analytic Geometry
Matrix
Vector Calculus
Optimization
Regression
Dimensionality Reduction
Density Estimation
Classification
2. Probability
Introduction to Probability
1D Random Variable
The function of One Random Variable
Joint Probability Distribution
Discrete Distribution
Normal Distribution
3. Statistics
Introduction to Statistics
Data Description
Random Samples
Sampling Distribution
Parameter Estimation
Hypotheses Testing
Regression
4. Programming
Python:
Python Basics
List
Set
Tuples
Dictionary
Function
NumPy
Pandas
Matplotlib/Seaborn
R Programming:
R Basics
Vector
List
Data Frame
Matrix
Array
Function
dplyr
ggplot2
Tidyr
Shiny
DataBase:
SQL
MongoDB
Data Structures
Web scraping
Linux
Git
5. Machine Learning
How Model Works
Basic Data Exploration
First ML Model
Model Validation
Underfitting & Overfitting
Random Forest
Handling Missing Values
Handling Categorical Variables
Pipelines
Cross-Validation(R)
XGBoost(Python|R)
Data Leakage
6. Deep Learning
Artificial Neural Network
Convolutional Neural Network
Recurrent Neural Network
TensorFlow
Keras
PyTorch
A Single Neuron
Deep Neural Network
Stochastic Gradient Descent
Overfitting and Underfitting
Dropout Batch Normalization
Binary Classification
7. Feature Engineering
Baseline Model
Categorical Encodings
Feature Generation
Feature Selection
8. Natural Language Processing
Text Classification
Word Vectors
9. Data Visualization Tools
BI (Business Intelligence):
Tableau
Power BI
Qlik View
Qlik Sense
10. Deployment
Microsoft Azure
Heroku
Google Cloud Platform
Flask
Django
Like if you need similar content ๐๐
๐๐ฟ๐ฒ๐ฒ ๐ฉ๐ถ๐ฟ๐๐๐ฎ๐น ๐๐ป๐๐ฒ๐ฟ๐ป๐๐ต๐ถ๐ฝ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐๐ ๐ง๐ผ๐ฝ ๐๐ผ๐บ๐ฝ๐ฎ๐ป๐ถ๐ฒ๐๐
- JP Morgan
- Accenture
- Walmart
- Tata Group
- Accenture
๐๐ถ๐ป๐ธ ๐:-
https://pdlink.in/3WTGGI8
Enroll For FREE & Get Certified๐
- JP Morgan
- Accenture
- Walmart
- Tata Group
- Accenture
๐๐ถ๐ป๐ธ ๐:-
https://pdlink.in/3WTGGI8
Enroll For FREE & Get Certified๐
Data Science Learning Plan
Step 1: Mathematics for Data Science (Statistics, Probability, Linear Algebra)
Step 2: Python for Data Science (Basics and Libraries)
Step 3: Data Manipulation and Analysis (Pandas, NumPy)
Step 4: Data Visualization (Matplotlib, Seaborn, Plotly)
Step 5: Databases and SQL for Data Retrieval
Step 6: Introduction to Machine Learning (Supervised and Unsupervised Learning)
Step 7: Data Cleaning and Preprocessing
Step 8: Feature Engineering and Selection
Step 9: Model Evaluation and Tuning
Step 10: Deep Learning (Neural Networks, TensorFlow, Keras)
Step 11: Working with Big Data (Hadoop, Spark)
Step 12: Building Data Science Projects and Portfolio
Step 1: Mathematics for Data Science (Statistics, Probability, Linear Algebra)
Step 2: Python for Data Science (Basics and Libraries)
Step 3: Data Manipulation and Analysis (Pandas, NumPy)
Step 4: Data Visualization (Matplotlib, Seaborn, Plotly)
Step 5: Databases and SQL for Data Retrieval
Step 6: Introduction to Machine Learning (Supervised and Unsupervised Learning)
Step 7: Data Cleaning and Preprocessing
Step 8: Feature Engineering and Selection
Step 9: Model Evaluation and Tuning
Step 10: Deep Learning (Neural Networks, TensorFlow, Keras)
Step 11: Working with Big Data (Hadoop, Spark)
Step 12: Building Data Science Projects and Portfolio
Resume key words for data scientist role explained in points:
1. Data Analysis:
- Proficient in extracting, cleaning, and analyzing data to derive insights.
- Skilled in using statistical methods and machine learning algorithms for data analysis.
- Experience with tools such as Python, R, or SQL for data manipulation and analysis.
2. Machine Learning:
- Strong understanding of machine learning techniques such as regression, classification, clustering, and neural networks.
- Experience in model development, evaluation, and deployment.
- Familiarity with libraries like TensorFlow, scikit-learn, or PyTorch for implementing machine learning models.
3. Data Visualization:
- Ability to present complex data in a clear and understandable manner through visualizations.
- Proficiency in tools like Matplotlib, Seaborn, or Tableau for creating insightful graphs and charts.
- Understanding of best practices in data visualization for effective communication of findings.
4. Big Data:
- Experience working with large datasets using technologies like Hadoop, Spark, or Apache Flink.
- Knowledge of distributed computing principles and tools for processing and analyzing big data.
- Ability to optimize algorithms and processes for scalability and performance.
5. Problem-Solving:
- Strong analytical and problem-solving skills to tackle complex data-related challenges.
- Ability to formulate hypotheses, design experiments, and iterate on solutions.
- Aptitude for identifying opportunities for leveraging data to drive business outcomes and decision-making.
Resume key words for a data analyst role
1. SQL (Structured Query Language):
- SQL is a programming language used for managing and querying relational databases.
- Data analysts often use SQL to extract, manipulate, and analyze data stored in databases, making it a fundamental skill for the role.
2. Python/R:
- Python and R are popular programming languages used for data analysis and statistical computing.
- Proficiency in Python or R allows data analysts to perform various tasks such as data cleaning, modeling, visualization, and machine learning.
3. Data Visualization:
- Data visualization involves presenting data in graphical or visual formats to communicate insights effectively.
- Data analysts use tools like Tableau, Power BI, or Python libraries like Matplotlib and Seaborn to create visualizations that help stakeholders understand complex data patterns and trends.
4. Statistical Analysis:
- Statistical analysis involves applying statistical methods to analyze and interpret data.
- Data analysts use statistical techniques to uncover relationships, trends, and patterns in data, providing valuable insights for decision-making.
5. Data-driven Decision Making:
- Data-driven decision making is the process of making decisions based on data analysis and evidence rather than intuition or gut feelings.
- Data analysts play a crucial role in helping organizations make informed decisions by analyzing data and providing actionable insights that drive business strategies and operations.
1. Data Analysis:
- Proficient in extracting, cleaning, and analyzing data to derive insights.
- Skilled in using statistical methods and machine learning algorithms for data analysis.
- Experience with tools such as Python, R, or SQL for data manipulation and analysis.
2. Machine Learning:
- Strong understanding of machine learning techniques such as regression, classification, clustering, and neural networks.
- Experience in model development, evaluation, and deployment.
- Familiarity with libraries like TensorFlow, scikit-learn, or PyTorch for implementing machine learning models.
3. Data Visualization:
- Ability to present complex data in a clear and understandable manner through visualizations.
- Proficiency in tools like Matplotlib, Seaborn, or Tableau for creating insightful graphs and charts.
- Understanding of best practices in data visualization for effective communication of findings.
4. Big Data:
- Experience working with large datasets using technologies like Hadoop, Spark, or Apache Flink.
- Knowledge of distributed computing principles and tools for processing and analyzing big data.
- Ability to optimize algorithms and processes for scalability and performance.
5. Problem-Solving:
- Strong analytical and problem-solving skills to tackle complex data-related challenges.
- Ability to formulate hypotheses, design experiments, and iterate on solutions.
- Aptitude for identifying opportunities for leveraging data to drive business outcomes and decision-making.
Resume key words for a data analyst role
1. SQL (Structured Query Language):
- SQL is a programming language used for managing and querying relational databases.
- Data analysts often use SQL to extract, manipulate, and analyze data stored in databases, making it a fundamental skill for the role.
2. Python/R:
- Python and R are popular programming languages used for data analysis and statistical computing.
- Proficiency in Python or R allows data analysts to perform various tasks such as data cleaning, modeling, visualization, and machine learning.
3. Data Visualization:
- Data visualization involves presenting data in graphical or visual formats to communicate insights effectively.
- Data analysts use tools like Tableau, Power BI, or Python libraries like Matplotlib and Seaborn to create visualizations that help stakeholders understand complex data patterns and trends.
4. Statistical Analysis:
- Statistical analysis involves applying statistical methods to analyze and interpret data.
- Data analysts use statistical techniques to uncover relationships, trends, and patterns in data, providing valuable insights for decision-making.
5. Data-driven Decision Making:
- Data-driven decision making is the process of making decisions based on data analysis and evidence rather than intuition or gut feelings.
- Data analysts play a crucial role in helping organizations make informed decisions by analyzing data and providing actionable insights that drive business strategies and operations.
๐๐ฅ๐๐ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐ฐ๐น๐ฎ๐๐ ๐ข๐ป ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐๐
๐ Want to break into Data Analytics?
Join our free Workshop with a Data Engineer from Mercedes! ๐
โ Career insights in Data Analytics
โ Live data analysis& visualization demo
โ Expert guidance to fast-track your journey
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐ ๐:-
https://pdlink.in/4hRxSdD
Seats are limited! Reserve yours now:
Date & Time :- 13th Feb ,6PM
๐ Want to break into Data Analytics?
Join our free Workshop with a Data Engineer from Mercedes! ๐
โ Career insights in Data Analytics
โ Live data analysis& visualization demo
โ Expert guidance to fast-track your journey
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐ ๐:-
https://pdlink.in/4hRxSdD
Seats are limited! Reserve yours now:
Date & Time :- 13th Feb ,6PM
ML Interview Question โฌ๏ธ
โก๏ธ Logistic Regression
The interviewer asked to explain Logistic Regression along with its:
๐ท Cost function
๐ท Assumptions
๐ท Evaluation metrics
Here is the step by step approach to answer:
โ๏ธ Cost function: Point out how logistic regression uses log loss for classification.
โ๏ธ Assumptions: Explain LR assumes features are independent and they have a linear link.
โ๏ธ Evaluation metrics: Discuss accuracy, precision, and F1-score to measure performance.
Knowing every concept is important but more than that, it is important to convey our knowledge๐ฏ
โก๏ธ Logistic Regression
The interviewer asked to explain Logistic Regression along with its:
๐ท Cost function
๐ท Assumptions
๐ท Evaluation metrics
Here is the step by step approach to answer:
โ๏ธ Cost function: Point out how logistic regression uses log loss for classification.
โ๏ธ Assumptions: Explain LR assumes features are independent and they have a linear link.
โ๏ธ Evaluation metrics: Discuss accuracy, precision, and F1-score to measure performance.
Knowing every concept is important but more than that, it is important to convey our knowledge๐ฏ
๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ (๐ก๐ผ ๐ฆ๐๐ฟ๐ถ๐ป๐ด๐ ๐๐๐๐ฎ๐ฐ๐ต๐ฒ๐ฑ)
๐ก๐ผ ๐ณ๐ฎ๐ป๐ฐ๐ ๐ฐ๐ผ๐๐ฟ๐๐ฒ๐, ๐ป๐ผ ๐ฐ๐ผ๐ป๐ฑ๐ถ๐๐ถ๐ผ๐ป๐, ๐ท๐๐๐ ๐ฝ๐๐ฟ๐ฒ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด.
๐๐ฒ๐ฟ๐ฒโ๐ ๐ต๐ผ๐ ๐๐ผ ๐ฏ๐ฒ๐ฐ๐ผ๐บ๐ฒ ๐ฎ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐:
1๏ธโฃ Python Programming for Data Science โ Harvardโs CS50P
The best intro to Python for absolute beginners:
โฌ Covers loops, data structures, and practical exercises.
โฌ Designed to help you build foundational coding skills.
Link: https://cs50.harvard.edu/python/
https://www.tgoop.com/datasciencefun
2๏ธโฃ Statistics & Probability โ Khan Academy
Want to master probability, distributions, and hypothesis testing? This is where to start:
โฌ Clear, beginner-friendly videos.
โฌ Exercises to test your skills.
Link: https://www.khanacademy.org/math/statistics-probability
https://whatsapp.com/channel/0029Vat3Dc4KAwEcfFbNnZ3O
3๏ธโฃ Linear Algebra for Data Science โ 3Blue1Brown
โฌ Learn about matrices, vectors, and transformations.
โฌ Essential for machine learning models.
Link: https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9KzVk3AjplI5PYPxkUr
4๏ธโฃ SQL Basics โ Mode Analytics
SQL is the backbone of data manipulation. This tutorial covers:
โฌ Writing queries, joins, and filtering data.
โฌ Real-world datasets to practice.
Link: https://mode.com/sql-tutorial
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
5๏ธโฃ Data Visualization โ freeCodeCamp
Learn to create stunning visualizations using Python libraries:
โฌ Covers Matplotlib, Seaborn, and Plotly.
โฌ Step-by-step projects included.
Link: https://www.youtube.com/watch?v=JLzTJhC2DZg
https://whatsapp.com/channel/0029VaxaFzoEQIaujB31SO34
6๏ธโฃ Machine Learning Basics โ Googleโs Machine Learning Crash Course
An in-depth introduction to machine learning for beginners:
โฌ Learn supervised and unsupervised learning.
โฌ Hands-on coding with TensorFlow.
Link: https://developers.google.com/machine-learning/crash-course
7๏ธโฃ Deep Learning โ Fast.aiโs Free Course
Fast.ai makes deep learning easy and accessible:
โฌ Build neural networks with PyTorch.
โฌ Learn by coding real projects.
Link: https://course.fast.ai/
8๏ธโฃ Data Science Projects โ Kaggle
โฌ Compete in challenges to practice your skills.
โฌ Great way to build your portfolio.
Link: https://www.kaggle.com/
๐ก๐ผ ๐ณ๐ฎ๐ป๐ฐ๐ ๐ฐ๐ผ๐๐ฟ๐๐ฒ๐, ๐ป๐ผ ๐ฐ๐ผ๐ป๐ฑ๐ถ๐๐ถ๐ผ๐ป๐, ๐ท๐๐๐ ๐ฝ๐๐ฟ๐ฒ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด.
๐๐ฒ๐ฟ๐ฒโ๐ ๐ต๐ผ๐ ๐๐ผ ๐ฏ๐ฒ๐ฐ๐ผ๐บ๐ฒ ๐ฎ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐:
1๏ธโฃ Python Programming for Data Science โ Harvardโs CS50P
The best intro to Python for absolute beginners:
โฌ Covers loops, data structures, and practical exercises.
โฌ Designed to help you build foundational coding skills.
Link: https://cs50.harvard.edu/python/
https://www.tgoop.com/datasciencefun
2๏ธโฃ Statistics & Probability โ Khan Academy
Want to master probability, distributions, and hypothesis testing? This is where to start:
โฌ Clear, beginner-friendly videos.
โฌ Exercises to test your skills.
Link: https://www.khanacademy.org/math/statistics-probability
https://whatsapp.com/channel/0029Vat3Dc4KAwEcfFbNnZ3O
3๏ธโฃ Linear Algebra for Data Science โ 3Blue1Brown
โฌ Learn about matrices, vectors, and transformations.
โฌ Essential for machine learning models.
Link: https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9KzVk3AjplI5PYPxkUr
4๏ธโฃ SQL Basics โ Mode Analytics
SQL is the backbone of data manipulation. This tutorial covers:
โฌ Writing queries, joins, and filtering data.
โฌ Real-world datasets to practice.
Link: https://mode.com/sql-tutorial
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
5๏ธโฃ Data Visualization โ freeCodeCamp
Learn to create stunning visualizations using Python libraries:
โฌ Covers Matplotlib, Seaborn, and Plotly.
โฌ Step-by-step projects included.
Link: https://www.youtube.com/watch?v=JLzTJhC2DZg
https://whatsapp.com/channel/0029VaxaFzoEQIaujB31SO34
6๏ธโฃ Machine Learning Basics โ Googleโs Machine Learning Crash Course
An in-depth introduction to machine learning for beginners:
โฌ Learn supervised and unsupervised learning.
โฌ Hands-on coding with TensorFlow.
Link: https://developers.google.com/machine-learning/crash-course
7๏ธโฃ Deep Learning โ Fast.aiโs Free Course
Fast.ai makes deep learning easy and accessible:
โฌ Build neural networks with PyTorch.
โฌ Learn by coding real projects.
Link: https://course.fast.ai/
8๏ธโฃ Data Science Projects โ Kaggle
โฌ Compete in challenges to practice your skills.
โฌ Great way to build your portfolio.
Link: https://www.kaggle.com/
๐๐ฒ๐ฎ๐ฟ๐ป ๐ฃ๐๐๐ต๐ผ๐ป ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ ๐๐ถ๐๐ต ๐๐ผ๐ผ๐ด๐น๐ฒโ๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐!๐
You want to break into IT automation, data analysis, or software developmentโจ๏ธ
These FREE Google-backed courses will help you master Python from scratch!๐ก
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42QHRM5
๐ข Donโt miss out! Invest in your future and start learning today! ๐
You want to break into IT automation, data analysis, or software developmentโจ๏ธ
These FREE Google-backed courses will help you master Python from scratch!๐ก
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42QHRM5
๐ข Donโt miss out! Invest in your future and start learning today! ๐
๐๐ข๐ฆ๐ฉ๐ฅ๐ ๐๐ฎ๐ข๐๐ ๐ญ๐จ ๐๐๐๐ซ๐ง ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐จ๐ซ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ ๐
๐ ๐๐ก๐๐ญ ๐ข๐ฌ ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ?
Imagine you're teaching a child to recognize fruits. You show them an apple, tell them itโs an apple, and next time they know it. Thatโs what Machine Learning does! But instead of a child, itโs a computer, and instead of fruits, it learns from data.
Machine Learning is about teaching computers to learn from past data so they can make smart decisions or predictions on their own, improving over time without needing new instructions.
๐ค ๐๐ก๐ฒ ๐ข๐ฌ ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฆ๐ฉ๐จ๐ซ๐ญ๐๐ง๐ญ ๐๐จ๐ซ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ?
Machine Learning makes data analytics super powerful. Instead of just looking at past data, it can help predict future trends, find patterns we didnโt notice, and make decisions that help businesses grow!
๐ฎ ๐๐จ๐ฐ ๐ญ๐จ ๐๐๐๐ซ๐ง ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐จ๐ซ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ?
โ ๐๐๐๐ซ๐ง ๐๐ฒ๐ญ๐ก๐จ๐ง: Python is the most commonly used language in ML. Start by getting comfortable with basic Python, then move on to ML-specific libraries like:
๐ฉ๐๐ง๐๐๐ฌ: For data manipulation.
๐๐ฎ๐ฆ๐๐ฒ: For numerical calculations.
๐ฌ๐๐ข๐ค๐ข๐ญ-๐ฅ๐๐๐ซ๐ง: For implementing basic ML algorithms.
โ ๐๐ง๐๐๐ซ๐ฌ๐ญ๐๐ง๐ ๐ญ๐ก๐ ๐๐๐ฌ๐ข๐๐ฌ ๐จ๐ ๐๐ญ๐๐ญ๐ข๐ฌ๐ญ๐ข๐๐ฌ: ML relies heavily on concepts like probability, distributions, and hypothesis testing. Understanding basic statistics will help you grasp how models work.
โ ๐๐ซ๐๐๐ญ๐ข๐๐ ๐จ๐ง ๐๐๐๐ฅ ๐๐๐ญ๐๐ฌ๐๐ญ๐ฌ: Platforms like Kaggle offer datasets and ML competitions. Start by analyzing small datasets to understand how machine learning models make predictions.
โ ๐๐๐๐ซ๐ง ๐๐ข๐ฌ๐ฎ๐๐ฅ๐ข๐ณ๐๐ญ๐ข๐จ๐ง: Use tools like Matplotlib or Seaborn to visualize data. This will help you understand patterns in the data and how machine learning models interpret them.
โ ๐๐จ๐ซ๐ค ๐จ๐ง ๐๐ข๐ฆ๐ฉ๐ฅ๐ ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Start with basic ML projects such as:
-Predicting house prices.
-Classifying emails as spam or not spam.
-Clustering customers based on their purchasing habits.
Data Science Resources
๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Like if you need similar content ๐๐
๐ ๐๐ก๐๐ญ ๐ข๐ฌ ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ?
Imagine you're teaching a child to recognize fruits. You show them an apple, tell them itโs an apple, and next time they know it. Thatโs what Machine Learning does! But instead of a child, itโs a computer, and instead of fruits, it learns from data.
Machine Learning is about teaching computers to learn from past data so they can make smart decisions or predictions on their own, improving over time without needing new instructions.
๐ค ๐๐ก๐ฒ ๐ข๐ฌ ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฆ๐ฉ๐จ๐ซ๐ญ๐๐ง๐ญ ๐๐จ๐ซ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ?
Machine Learning makes data analytics super powerful. Instead of just looking at past data, it can help predict future trends, find patterns we didnโt notice, and make decisions that help businesses grow!
๐ฎ ๐๐จ๐ฐ ๐ญ๐จ ๐๐๐๐ซ๐ง ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐จ๐ซ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ?
โ ๐๐๐๐ซ๐ง ๐๐ฒ๐ญ๐ก๐จ๐ง: Python is the most commonly used language in ML. Start by getting comfortable with basic Python, then move on to ML-specific libraries like:
๐ฉ๐๐ง๐๐๐ฌ: For data manipulation.
๐๐ฎ๐ฆ๐๐ฒ: For numerical calculations.
๐ฌ๐๐ข๐ค๐ข๐ญ-๐ฅ๐๐๐ซ๐ง: For implementing basic ML algorithms.
โ ๐๐ง๐๐๐ซ๐ฌ๐ญ๐๐ง๐ ๐ญ๐ก๐ ๐๐๐ฌ๐ข๐๐ฌ ๐จ๐ ๐๐ญ๐๐ญ๐ข๐ฌ๐ญ๐ข๐๐ฌ: ML relies heavily on concepts like probability, distributions, and hypothesis testing. Understanding basic statistics will help you grasp how models work.
โ ๐๐ซ๐๐๐ญ๐ข๐๐ ๐จ๐ง ๐๐๐๐ฅ ๐๐๐ญ๐๐ฌ๐๐ญ๐ฌ: Platforms like Kaggle offer datasets and ML competitions. Start by analyzing small datasets to understand how machine learning models make predictions.
โ ๐๐๐๐ซ๐ง ๐๐ข๐ฌ๐ฎ๐๐ฅ๐ข๐ณ๐๐ญ๐ข๐จ๐ง: Use tools like Matplotlib or Seaborn to visualize data. This will help you understand patterns in the data and how machine learning models interpret them.
โ ๐๐จ๐ซ๐ค ๐จ๐ง ๐๐ข๐ฆ๐ฉ๐ฅ๐ ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Start with basic ML projects such as:
-Predicting house prices.
-Classifying emails as spam or not spam.
-Clustering customers based on their purchasing habits.
Data Science Resources
๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Like if you need similar content ๐๐
Three different learning styles in machine learning algorithms:
1. Supervised Learning
Input data is called training data and has a known label or result such as spam/not-spam or a stock price at a time.
A model is prepared through a training process in which it is required to make predictions and is corrected when those predictions are wrong. The training process continues until the model achieves a desired level of accuracy on the training data.
Example problems are classification and regression.
Example algorithms include: Logistic Regression and the Back Propagation Neural Network.
2. Unsupervised Learning
Input data is not labeled and does not have a known result.
A model is prepared by deducing structures present in the input data. This may be to extract general rules. It may be through a mathematical process to systematically reduce redundancy, or it may be to organize data by similarity.
Example problems are clustering, dimensionality reduction and association rule learning.
Example algorithms include: the Apriori algorithm and K-Means.
3. Semi-Supervised Learning
Input data is a mixture of labeled and unlabelled examples.
There is a desired prediction problem but the model must learn the structures to organize the data as well as make predictions.
Example problems are classification and regression.
Example algorithms are extensions to other flexible methods that make assumptions about how to model the unlabeled data.
1. Supervised Learning
Input data is called training data and has a known label or result such as spam/not-spam or a stock price at a time.
A model is prepared through a training process in which it is required to make predictions and is corrected when those predictions are wrong. The training process continues until the model achieves a desired level of accuracy on the training data.
Example problems are classification and regression.
Example algorithms include: Logistic Regression and the Back Propagation Neural Network.
2. Unsupervised Learning
Input data is not labeled and does not have a known result.
A model is prepared by deducing structures present in the input data. This may be to extract general rules. It may be through a mathematical process to systematically reduce redundancy, or it may be to organize data by similarity.
Example problems are clustering, dimensionality reduction and association rule learning.
Example algorithms include: the Apriori algorithm and K-Means.
3. Semi-Supervised Learning
Input data is a mixture of labeled and unlabelled examples.
There is a desired prediction problem but the model must learn the structures to organize the data as well as make predictions.
Example problems are classification and regression.
Example algorithms are extensions to other flexible methods that make assumptions about how to model the unlabeled data.
๐ ๐ฎ๐๐๐ฒ๐ฟ ๐ฆ๐ค๐ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ & ๐จ๐ป๐น๐ผ๐ฐ๐ธ ๐๐ถ๐ด๐ต-๐ฃ๐ฎ๐๐ถ๐ป๐ด ๐ข๐ฝ๐ฝ๐ผ๐ฟ๐๐๐ป๐ถ๐๐ถ๐ฒ๐!๐
Top 3 Free YouTube Playlists to Learn SQL
1)SQL Tutorial Videos
2)SQL Mastery: From Basics to Advanced
3)Learn Complete SQL (Beginner to Advanced)
๐๐ถ๐ป๐ธ ๐:-
https://pdlink.in/4hFyseX
Enroll For FREE & Get Certified๐
Top 3 Free YouTube Playlists to Learn SQL
1)SQL Tutorial Videos
2)SQL Mastery: From Basics to Advanced
3)Learn Complete SQL (Beginner to Advanced)
๐๐ถ๐ป๐ธ ๐:-
https://pdlink.in/4hFyseX
Enroll For FREE & Get Certified๐
Key Concepts for Data Science Interviews
1. Data Cleaning and Preprocessing: Master techniques for cleaning, transforming, and preparing data for analysis, including handling missing data, outlier detection, data normalization, and feature engineering.
2. Statistics and Probability: Have a solid understanding of descriptive and inferential statistics, including distributions, hypothesis testing, p-values, confidence intervals, and Bayesian probability.
3. Linear Algebra and Calculus: Understand the mathematical foundations of data science, including matrix operations, eigenvalues, derivatives, and gradients, which are essential for algorithms like PCA and gradient descent.
4. Machine Learning Algorithms: Know the fundamentals of machine learning, including supervised and unsupervised learning. Be familiar with key algorithms like linear regression, logistic regression, decision trees, random forests, SVMs, and k-means clustering.
5. Model Evaluation and Validation: Learn how to evaluate model performance using metrics such as accuracy, precision, recall, F1 score, ROC-AUC, and confusion matrices. Understand techniques like cross-validation and overfitting prevention.
6. Feature Engineering: Develop the ability to create meaningful features from raw data that improve model performance. This includes encoding categorical variables, scaling features, and creating interaction terms.
7. Deep Learning: Understand the basics of neural networks and deep learning. Familiarize yourself with architectures like CNNs, RNNs, and frameworks like TensorFlow and PyTorch.
8. Natural Language Processing (NLP): Learn key NLP techniques such as tokenization, stemming, lemmatization, and sentiment analysis. Understand the use of models like BERT, Word2Vec, and LSTM for text data.
9. Big Data Technologies: Gain knowledge of big data frameworks and tools like Hadoop, Spark, and NoSQL databases that are used to process large datasets efficiently.
10. Data Visualization and Storytelling: Develop the ability to create compelling visualizations using tools like Matplotlib, Seaborn, or Tableau. Practice conveying your data findings clearly to both technical and non-technical audiences through visual storytelling.
11. Python and R: Be proficient in Python and R for data manipulation, analysis, and model building. Familiarity with libraries like Pandas, NumPy, Scikit-learn, and tidyverse is essential.
12. Domain Knowledge: Develop a deep understanding of the specific industry or domain you're working in, as this context helps you make more informed decisions during the data analysis and modeling process.
Like if you need similar content ๐๐
1. Data Cleaning and Preprocessing: Master techniques for cleaning, transforming, and preparing data for analysis, including handling missing data, outlier detection, data normalization, and feature engineering.
2. Statistics and Probability: Have a solid understanding of descriptive and inferential statistics, including distributions, hypothesis testing, p-values, confidence intervals, and Bayesian probability.
3. Linear Algebra and Calculus: Understand the mathematical foundations of data science, including matrix operations, eigenvalues, derivatives, and gradients, which are essential for algorithms like PCA and gradient descent.
4. Machine Learning Algorithms: Know the fundamentals of machine learning, including supervised and unsupervised learning. Be familiar with key algorithms like linear regression, logistic regression, decision trees, random forests, SVMs, and k-means clustering.
5. Model Evaluation and Validation: Learn how to evaluate model performance using metrics such as accuracy, precision, recall, F1 score, ROC-AUC, and confusion matrices. Understand techniques like cross-validation and overfitting prevention.
6. Feature Engineering: Develop the ability to create meaningful features from raw data that improve model performance. This includes encoding categorical variables, scaling features, and creating interaction terms.
7. Deep Learning: Understand the basics of neural networks and deep learning. Familiarize yourself with architectures like CNNs, RNNs, and frameworks like TensorFlow and PyTorch.
8. Natural Language Processing (NLP): Learn key NLP techniques such as tokenization, stemming, lemmatization, and sentiment analysis. Understand the use of models like BERT, Word2Vec, and LSTM for text data.
9. Big Data Technologies: Gain knowledge of big data frameworks and tools like Hadoop, Spark, and NoSQL databases that are used to process large datasets efficiently.
10. Data Visualization and Storytelling: Develop the ability to create compelling visualizations using tools like Matplotlib, Seaborn, or Tableau. Practice conveying your data findings clearly to both technical and non-technical audiences through visual storytelling.
11. Python and R: Be proficient in Python and R for data manipulation, analysis, and model building. Familiarity with libraries like Pandas, NumPy, Scikit-learn, and tidyverse is essential.
12. Domain Knowledge: Develop a deep understanding of the specific industry or domain you're working in, as this context helps you make more informed decisions during the data analysis and modeling process.
Like if you need similar content ๐๐
๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐ง๐ผ ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ๐
1) Introduction to Cyber Security
2) AWS Cloud Masterclass
3)Salesforce Developer Catalyst
4) Python Basics
5) Project Management Basics
๐๐ถ๐ป๐ธ ๐:-
https://pdlink.in/4jQJfo5
Enroll For FREE & Get Certified๐
1) Introduction to Cyber Security
2) AWS Cloud Masterclass
3)Salesforce Developer Catalyst
4) Python Basics
5) Project Management Basics
๐๐ถ๐ป๐ธ ๐:-
https://pdlink.in/4jQJfo5
Enroll For FREE & Get Certified๐
Top 10 machine Learning algorithms for beginners ๐๐
1. Linear Regression: A simple algorithm used for predicting a continuous value based on one or more input features.
2. Logistic Regression: Used for binary classification problems, where the output is a binary value (0 or 1).
3. Decision Trees: A versatile algorithm that can be used for both classification and regression tasks, based on a tree-like structure of decisions.
4. Random Forest: An ensemble learning method that combines multiple decision trees to improve the accuracy and robustness of the model.
5. Support Vector Machines (SVM): Used for both classification and regression tasks, with the goal of finding the hyperplane that best separates the classes.
6. K-Nearest Neighbors (KNN): A simple algorithm that classifies a new data point based on the majority class of its k nearest neighbors in the feature space.
7. Naive Bayes: A probabilistic algorithm based on Bayes' theorem that is commonly used for text classification and spam filtering.
8. K-Means Clustering: An unsupervised learning algorithm used for clustering data points into k distinct groups based on similarity.
9. Principal Component Analysis (PCA): A dimensionality reduction technique used to reduce the number of features in a dataset while preserving the most important information.
10. Gradient Boosting Machines (GBM): An ensemble learning method that builds a series of weak learners to create a strong predictive model through iterative optimization.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://www.tgoop.com/datasciencefun
Like if you need similar content ๐๐
1. Linear Regression: A simple algorithm used for predicting a continuous value based on one or more input features.
2. Logistic Regression: Used for binary classification problems, where the output is a binary value (0 or 1).
3. Decision Trees: A versatile algorithm that can be used for both classification and regression tasks, based on a tree-like structure of decisions.
4. Random Forest: An ensemble learning method that combines multiple decision trees to improve the accuracy and robustness of the model.
5. Support Vector Machines (SVM): Used for both classification and regression tasks, with the goal of finding the hyperplane that best separates the classes.
6. K-Nearest Neighbors (KNN): A simple algorithm that classifies a new data point based on the majority class of its k nearest neighbors in the feature space.
7. Naive Bayes: A probabilistic algorithm based on Bayes' theorem that is commonly used for text classification and spam filtering.
8. K-Means Clustering: An unsupervised learning algorithm used for clustering data points into k distinct groups based on similarity.
9. Principal Component Analysis (PCA): A dimensionality reduction technique used to reduce the number of features in a dataset while preserving the most important information.
10. Gradient Boosting Machines (GBM): An ensemble learning method that builds a series of weak learners to create a strong predictive model through iterative optimization.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://www.tgoop.com/datasciencefun
Like if you need similar content ๐๐