Warning: mkdir(): No space left on device in /var/www/tgoop/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/def_model_train/--): Failed to open stream: No such file or directory in /var/www/tgoop/post.php on line 50
я обучала одну модель@def_model_train P.1041
DEF_MODEL_TRAIN Telegram 1041
Mixture of A Million Experts

https://arxiv.org/abs/2407.04153

При виде названия статьи у вас наверное может возникнуть вопрос, а зачем вообще скейлиться до миллиона экспертов. На это автор (да да, это статья написанная в соло) дает две причины:
1. Feedforward слои занимают 2/3 параметров трансформера, при этом, значительно урезать их нельзя, так как в них хранятся знания модели (пруф). Поэтому можно сокращать число активных параметров при инференсе, создав вместого одного общего feedforward слоя несколько экспертов поменьше и активируя только нужные из них
2. В передыдущих работах было показано, что при compute optimal числе токенов повышение гранулярности (число активных араметров / размер одного эксперта) консистено повышает и способности модели, всегда при этом обгоняя dense модель с аналогичным числом параметров

В этой статье предлагется радикально повысить число экспертов буквально до миллиона, пожертвовав при этом их размером – каждый эксперт представляет из себя всего один нейрон. Выглядит алгоритм Parameter Efficient Expert Retrieval (PEER) целиком примерно так:

- Есть небольшая query network, которая преобразовывает входную последовательность на каком-нибудь слое в query vector
- У каждого эксперта есть свой product key (тоже обучаемый вектор)
- Выбирается top-k экспертов с самыми большими скалярными прозведениями между query vector и product key
- Эти скалярные произведения загоняются в софтмакс-функцию и используются как веса в линейной комбинации ответов всех k экспертов
- В финальной версии есть h независмых query networks, каждая их них выбирает свои top-k экспертов, и на выходе у нас получается сумма из h линейных комбинаций

Плюс такого подхода в том, что число активных параметров можно регулировать напрямую в зависимости от доступного компьюта, оно зависит только от выбора h и k. А интуицию, почему это работает лучше обычных dense feeedforward слоев, можно проследить, если мы возьмем k = 1, то есть ситуацию, где каждая query network будет выбирать всего один нейрон. Тогда получается, что мы просто законово соберем feedforward слой размера h, только он будет не один фиксированный на весь трансфомер блок, а свой для каждого входного текста

Еще одно потенциальный плюс этой архитектуры – это lifelong learning. Если мы можем замораживать старых экспертов и постоянно добавлять новых, то модель может обучаться на постоянном потоке новых данных. Вообще автор статьи как раз и заниматся в основном решением проблем lifelong learning и catastrophic forgetting, когда модель начинает забывать старую информацию, если ее начать обучать на чем-то новом. Так что видимо претензия статьи тут не столько в облегчении нагрузки на компьют и повышении перфоманса модели, сколько в том, что такая архитектура получается гораздо более гибкой, чем оригинальный трансформер, и позволяет нам адаптировать вычисления под каждый новый запрос

Тем не менее ситуация с компьютом тоже неплохо выглядит – на вот этих графиках видно, что с одинаковым лимитом на комьют, PEER получается вместить в себя гораздо больше параметров и получить за счет этого перплексию пониже
👍32🔥96🤔2🤯2🎉1🤩1



tgoop.com/def_model_train/1041
Create:
Last Update:

Mixture of A Million Experts

https://arxiv.org/abs/2407.04153

При виде названия статьи у вас наверное может возникнуть вопрос, а зачем вообще скейлиться до миллиона экспертов. На это автор (да да, это статья написанная в соло) дает две причины:
1. Feedforward слои занимают 2/3 параметров трансформера, при этом, значительно урезать их нельзя, так как в них хранятся знания модели (пруф). Поэтому можно сокращать число активных параметров при инференсе, создав вместого одного общего feedforward слоя несколько экспертов поменьше и активируя только нужные из них
2. В передыдущих работах было показано, что при compute optimal числе токенов повышение гранулярности (число активных араметров / размер одного эксперта) консистено повышает и способности модели, всегда при этом обгоняя dense модель с аналогичным числом параметров

В этой статье предлагется радикально повысить число экспертов буквально до миллиона, пожертвовав при этом их размером – каждый эксперт представляет из себя всего один нейрон. Выглядит алгоритм Parameter Efficient Expert Retrieval (PEER) целиком примерно так:

- Есть небольшая query network, которая преобразовывает входную последовательность на каком-нибудь слое в query vector
- У каждого эксперта есть свой product key (тоже обучаемый вектор)
- Выбирается top-k экспертов с самыми большими скалярными прозведениями между query vector и product key
- Эти скалярные произведения загоняются в софтмакс-функцию и используются как веса в линейной комбинации ответов всех k экспертов
- В финальной версии есть h независмых query networks, каждая их них выбирает свои top-k экспертов, и на выходе у нас получается сумма из h линейных комбинаций

Плюс такого подхода в том, что число активных параметров можно регулировать напрямую в зависимости от доступного компьюта, оно зависит только от выбора h и k. А интуицию, почему это работает лучше обычных dense feeedforward слоев, можно проследить, если мы возьмем k = 1, то есть ситуацию, где каждая query network будет выбирать всего один нейрон. Тогда получается, что мы просто законово соберем feedforward слой размера h, только он будет не один фиксированный на весь трансфомер блок, а свой для каждого входного текста

Еще одно потенциальный плюс этой архитектуры – это lifelong learning. Если мы можем замораживать старых экспертов и постоянно добавлять новых, то модель может обучаться на постоянном потоке новых данных. Вообще автор статьи как раз и заниматся в основном решением проблем lifelong learning и catastrophic forgetting, когда модель начинает забывать старую информацию, если ее начать обучать на чем-то новом. Так что видимо претензия статьи тут не столько в облегчении нагрузки на компьют и повышении перфоманса модели, сколько в том, что такая архитектура получается гораздо более гибкой, чем оригинальный трансформер, и позволяет нам адаптировать вычисления под каждый новый запрос

Тем не менее ситуация с компьютом тоже неплохо выглядит – на вот этих графиках видно, что с одинаковым лимитом на комьют, PEER получается вместить в себя гораздо больше параметров и получить за счет этого перплексию пониже

BY я обучала одну модель




Share with your friend now:
tgoop.com/def_model_train/1041

View MORE
Open in Telegram


Telegram News

Date: |

Don’t publish new content at nighttime. Since not all users disable notifications for the night, you risk inadvertently disturbing them. It’s easy to create a Telegram channel via desktop app or mobile app (for Android and iOS): Hui said the time period and nature of some offences “overlapped” and thus their prison terms could be served concurrently. The judge ordered Ng to be jailed for a total of six years and six months. To upload a logo, click the Menu icon and select “Manage Channel.” In a new window, hit the Camera icon. Telegram Android app: Open the chats list, click the menu icon and select “New Channel.”
from us


Telegram я обучала одну модель
FROM American