Telegram Web
Первый вебинар нашего курса по AI-агентам уже прошёл!

Запись уже выложили на обучающей платформе — можно влетать и догонять с комфортом.

Первые слушатели уже оставили фидбэки — и, кажется, мы попали в точку:
— «теперь наконец понял, как выбирать модели под задачу — раньше брал первую попавшуюся»
— «без лишнего, по делу, в лайве — кайф»
— «огонь, ожидания 100% оправданы лично у меня»

Если хотели вписаться, но сомневались — ещё не поздно. Вебинары идут вживую, записи сохраняются, чат работает, материалы открыты.

Ещё можно догнать и пройти всё вместе с потоком.

👉 Залетай на курс
Зачем в задачах классификации можно использовать регрессию перед классификацией

Иногда полезно предсказать непрерывную «оценку» или счёт, а потом превратить её в классы. Это особенно актуально, когда границы между классами нечёткие или имеют порядок.

Примеры:
▶️ В задаче определения уровня токсичности (0 — «нейтрально», 1 — «слегка агрессивно», 2 — «очень токсично») можно сначала регрессировать «степень токсичности», а затем порогами разделить на классы. Это называется ordinal regression.

▶️ В медицинской диагностике — если заболевание имеет стадии, и они близки по смыслу, а не просто «класс 0/1», регрессия может дать более тонкие различия, чем жёсткая классификация.

Иногда модель классификации может быть уверена на 51% в одном классе и 49% в другом — и потерять важную информацию. Регрессионный подход позволяет сохранить нюансы.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥1
2025/07/10 10:06:33
Back to Top
HTML Embed Code: