tgoop.com »
United States »
Библиотека собеса по Data Science | вопросы с собеседований » Telegram Web
Сейчас большинство представлений об ИИ ограничиваются одним агентом — моделькой, которая что-то предсказывает, генерирует или классифицирует.
Но реальный прорыв начинается, когда этих агентов становится несколько.
Когда они начинают взаимодействовать друг с другом.
Когда появляется координация, распределение ролей, память, планирование — всё это и есть мультиагентные системы (MAS).
— Microsoft делает язык DroidSpeak для общения между LLM
— Open Source-фреймворки вроде LangChain, AutoGen, CrewAI, LangGraph — бурно развиваются
— компании, включая МТС, уже применяют MAS в боевых задачах
🎓 На курсе мы подходим к этому практично:
Именно на третьем уроке вы впервые собираете не просто «умного бота», а живую систему из агентов, которая работает вместе — как команда.
Причём по-настоящему: врач, SQL-аналитик, travel-планировщик, Python-генератор, поисковик.
Please open Telegram to view this post
VIEW IN TELEGRAM
Хотя PyTorch или TensorFlow способны справляться со многими задачами с ограничениями, есть ситуации, когда специализированные решатели оказываются более подходящими:
•
•
•
Потенциальные сложности и крайние случаи:
•
•
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
Учёт порядка помогает
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3
🤯 Мы больше года строим мультиагентные системы
Грабли, находки, паттерны, эксперименты — всё это накопилось и в какой-то момент стало жалко держать только у себя.
Никита — рассказывает (и показывает) базу: токенизация, LLM, SFT, PEFT, локальный инференс + RAG и как оценивать его качество.
Диана — как строят мультиагентные системы, какие есть паттерны проектирования и библиотеки.
Макс — про инференс в проде + разберет CoPilot, соберет с вами из кусочков свой копайлот, а затем его сломает через prompt injection. // Макс фанат autogen (а если нет — он вас разубедит в своем классном канале)
Финальным аккордом Дима углубится в MCP и соберет несколько кейсов повзрослее.
Курс тут: https://clc.to/47pgYA
Промокод:datarascals действует до 23:59 29 июня
Грабли, находки, паттерны, эксперименты — всё это накопилось и в какой-то момент стало жалко держать только у себя.
Никита — рассказывает (и показывает) базу: токенизация, LLM, SFT, PEFT, локальный инференс + RAG и как оценивать его качество.
Диана — как строят мультиагентные системы, какие есть паттерны проектирования и библиотеки.
Макс — про инференс в проде + разберет CoPilot, соберет с вами из кусочков свой копайлот, а затем его сломает через prompt injection. // Макс фанат autogen (а если нет — он вас разубедит в своем классном канале)
Финальным аккордом Дима углубится в MCP и соберет несколько кейсов повзрослее.
Курс тут: https://clc.to/47pgYA
Промокод:
Аугментация помогает не только в условиях дефицита данных, но и при их
Аугментация (например, случайные повороты изображений, перестановки слов в тексте, добавление шума) помогает модели
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤1
Выбор класса с наибольшей вероятностью даёт одно конкретное решение, но теряет
Вероятностный вывод позволяет:
—
—
—
—
Таким образом, вероятности дают
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍2
Во многих алгоритмах машинного обучения присутствует
Фиксация случайного зерна позволяет сделать эксперименты
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤1
Хотя современные модели способны обрабатывать высокоразмерные данные, большое количество признаков может привести к
PCA помогает уменьшить размерность, сохранив
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3
Интуитивно кажется, что больше данных — всегда лучше. Но в некоторых случаях использование всего набора данных может быть неэффективным или даже вредным:
Выборка «умных» подмножеств
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
🔥 Последняя неделя перед стартом курса по AI-агентам
Старт курса уже 5го числа! Если вы планировали вписаться — сейчас ПОСЛЕДНИЙ шанс забронировать место
На курсе:
— разложим LLM по косточкам: токенизация, SFT, PEFT, инференс
— соберём RAG и научимся оценивать его адекватно
— построим настоящую мультиагентную систему — архитектуру, которая умеет расти
— разберём CoPilot, сломаем через prompt injection (спасибо Максу)
— и наконец, посмотрим, как это работает в MCP и реальных кейсах
📍 Это 5 живых вебинаров + раздатка + домашки + чат с преподавателями
И главное — возможность реально разобраться, как проектировать системы на LLM, а не просто «поиграться с API»
👉 Курс здесь
Старт курса уже 5го числа! Если вы планировали вписаться — сейчас ПОСЛЕДНИЙ шанс забронировать место
На курсе:
— разложим LLM по косточкам: токенизация, SFT, PEFT, инференс
— соберём RAG и научимся оценивать его адекватно
— построим настоящую мультиагентную систему — архитектуру, которая умеет расти
— разберём CoPilot, сломаем через prompt injection (спасибо Максу)
— и наконец, посмотрим, как это работает в MCP и реальных кейсах
📍 Это 5 живых вебинаров + раздатка + домашки + чат с преподавателями
И главное — возможность реально разобраться, как проектировать системы на LLM, а не просто «поиграться с API»
👉 Курс здесь
Обучение на предсказаниях другой модели — это основа
Это особенно полезно, когда
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍1
Во многих моделях, особенно нейронных сетях, изначальная симметрия
Чтобы этого избежать,
Симметрия красива в математике, но в обучении может быть
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
🧠 «Поиграйся с LLM, почитай про агентов — и сам поймёшь, как это работает»
Это один из самых бесполезных советов, который мы слышали в адрес тех, кто хочет разобраться в AI-агентах.
Поиграйся — это как?
Потыкать пару промптов в ChatGPT и решить, что теперь ты можешь строить мультиагентные системы? 🤡 Ну-ну.
AI-агенты — это не «очередная обёртка над GPT». Это архитектура. Состояния, инструменты, цепочки вызовов, память, оценка качества и адекватность поведения.
➡️ Чтобы разобраться, нужно:
— понимать, как устроен LLM под капотом
— уметь подключать внешние данные (RAG, retrievers, rerankers)
— уметь масштабировать и дебажить поведение агентов
— разбираться в фреймворках вроде AutoGen, CrewAI, LangChain
— знать, как всё это тащится в прод
Если вы реально хотите не «поиграться», а научиться собирать рабочие агентные системы — у нас стартует курс по разработке ИИ-агентов 5го июля
P.S: не упусти свой шанс, промокод:LASTCALL на 10.000₽
Это один из самых бесполезных советов, который мы слышали в адрес тех, кто хочет разобраться в AI-агентах.
Поиграйся — это как?
Потыкать пару промптов в ChatGPT и решить, что теперь ты можешь строить мультиагентные системы? 🤡 Ну-ну.
AI-агенты — это не «очередная обёртка над GPT». Это архитектура. Состояния, инструменты, цепочки вызовов, память, оценка качества и адекватность поведения.
➡️ Чтобы разобраться, нужно:
— понимать, как устроен LLM под капотом
— уметь подключать внешние данные (RAG, retrievers, rerankers)
— уметь масштабировать и дебажить поведение агентов
— разбираться в фреймворках вроде AutoGen, CrewAI, LangChain
— знать, как всё это тащится в прод
Если вы реально хотите не «поиграться», а научиться собирать рабочие агентные системы — у нас стартует курс по разработке ИИ-агентов 5го июля
P.S: не упусти свой шанс, промокод:
😤 Пока вы думаете — остальные уже учатся строить системы, которые работают за них
⚡24 часа до старта курса по AI-агентам. Самое время задуматься о прокачке скиллов, потому что места ограничены!
Если вы до сих пор думаете, что LLM — это просто «вызов через API», то вы рискуете очень скоро оказаться за бортом индустрии.
Модели больше не в центре. Решают те, кто умеет собирать интеллектуальные системы, а не просто «дообучать модельку».
➡️ Что вы потеряете, если не впишетесь:
— навык, который уже востребован на рынке
— понимание, как из GPT сделать полноценного помощника, агента или продукт
— шанс догнать тех, кто уже перешёл на следующий уровень
📌 Курс стартует уже завтра
— 5 вебинаров, живая практика, код, разборы, продовые кейсы
— без «посмотрите статью», только то, что реально нужно
Спикеры: Никита Зелинский (МТС), Диана Павликова, Макс Пташник, Дима Фомин — те, кто реально собирает агентные системы, а не просто про них пишет.
❗Старт уже завтра — забронируйте место на курсе сейчас
⚡24 часа до старта курса по AI-агентам. Самое время задуматься о прокачке скиллов, потому что места ограничены!
Если вы до сих пор думаете, что LLM — это просто «вызов через API», то вы рискуете очень скоро оказаться за бортом индустрии.
Модели больше не в центре. Решают те, кто умеет собирать интеллектуальные системы, а не просто «дообучать модельку».
➡️ Что вы потеряете, если не впишетесь:
— навык, который уже востребован на рынке
— понимание, как из GPT сделать полноценного помощника, агента или продукт
— шанс догнать тех, кто уже перешёл на следующий уровень
📌 Курс стартует уже завтра
— 5 вебинаров, живая практика, код, разборы, продовые кейсы
— без «посмотрите статью», только то, что реально нужно
Спикеры: Никита Зелинский (МТС), Диана Павликова, Макс Пташник, Дима Фомин — те, кто реально собирает агентные системы, а не просто про них пишет.
❗Старт уже завтра — забронируйте место на курсе сейчас
😎 Почему иногда используют «обманчиво плохую» loss-функцию на этапе обучения
Иногда для обучения выбирают лосс-функцию, котораяне совпадает с целевой метрикой — и даже, на первый взгляд, плохо её отражает.
Это делается не по ошибке, а потому что:
—Целевая метрика негладкая или недифференцируемая, например, F1-score, Precision\@K, Accuracy. Их нельзя напрямую оптимизировать с помощью градиентного спуска.
—Взамен используют surrogate loss — «замещающую» функцию, которую можно эффективно минимизировать.
Например:
✔️ log-loss для классификации,
✔️ hinge loss для SVM,
✔️ MSE вместо MAE в регрессии.
Иногда surrogate loss вообще не похож нацелевую метрику — и всё равно работает. Это парадокс: модель учится не по той метрике, которую мы хотим улучшить, но всё равно её улучшает.
Такой выбор — компромисс междуматематической удобством и практической целью. И это одна из причин, почему хорошие метрики ≠ хорошие loss-функции, и наоборот.
Библиотека собеса по Data Science
Иногда для обучения выбирают лосс-функцию, которая
—
—
Например:
Иногда surrogate loss вообще не похож на
Такой выбор — компромисс между
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1
🔥 Сегодня стартует курс по AI-агентам!
Онбординг уже сегодня, но ещё можно вписаться — ПОСЛЕДНИЙ ШАНС это сделать.
Мы больше года собирали мультиагентные системы: экспериментировали, переделывали и в итоге — оформили всё в 5 плотных вебинаров.
😤 «А можно ли вообще научиться чему-то за 5 вебинаров?!»
Если вы хотите просто послушать — нет
Если хотите разбираться и делать — да
➡️ На курсе:
— мы не читаем слайдики, а работаем в коде в реальном времени
— можно задавать вопросы прямо на вебинаре
— после каждого вебинара есть домашка и поддержка в чате
И главное — вы получаете системное понимание, а не набор хаотичных туториалов.
⚡️Если вы думаете, что успеете потом — не успеете.
Старт сегодня:
— а те, кто вписался сейчас, будут вас опережать — в проектах, на грейде и в зарплате
Знакомьтесь, эксперт нашего курса:
Никита Зелинский — Chief Data Scientist МТС, Head of ML Platforms, руководитель центра компетенций по Data Science.
❗Стартуем сегодня — забронируй свое место
Онбординг уже сегодня, но ещё можно вписаться — ПОСЛЕДНИЙ ШАНС это сделать.
Мы больше года собирали мультиагентные системы: экспериментировали, переделывали и в итоге — оформили всё в 5 плотных вебинаров.
😤 «А можно ли вообще научиться чему-то за 5 вебинаров?!»
Если вы хотите просто послушать — нет
Если хотите разбираться и делать — да
➡️ На курсе:
— мы не читаем слайдики, а работаем в коде в реальном времени
— можно задавать вопросы прямо на вебинаре
— после каждого вебинара есть домашка и поддержка в чате
И главное — вы получаете системное понимание, а не набор хаотичных туториалов.
⚡️Если вы думаете, что успеете потом — не успеете.
Старт сегодня:
— а те, кто вписался сейчас, будут вас опережать — в проектах, на грейде и в зарплате
Знакомьтесь, эксперт нашего курса:
Никита Зелинский — Chief Data Scientist МТС, Head of ML Platforms, руководитель центра компетенций по Data Science.
❗Стартуем сегодня — забронируй свое место
👉 Может ли модель машинного обучения быть «неправильно правой»
Да — и это довольно опасный случай. Модель может выдавать правильный результат, но по неправильной причине.
Примеры:
— Классическая история: модель для распознавания танков «научилась» отличать их от леса, но не по форме техники — а по погоде (все фото с танками были при пасмурной погоде, а без — в солнечную).
— Модель предсказывает болезнь, но оказывается, что она просто запомнила, в каких больницах делались анализы, а не сами медицинские показатели.
Это называется «shortcut learning» — когда модель ищет кратчайший путь к правильному ответу, даже если он бессмыслен с точки зрения задачи.
Почему это плохо:
—Модель может работать «правильно» на тесте, но провалиться в реальной жизни, когда нарушатся скрытые зависимости.
—В критичных сферах (медицина, право, финансы) это может привести к опасным решениям.
Библиотека собеса по Data Science
— Классическая история: модель для распознавания танков «научилась» отличать их от леса, но не по форме техники — а по погоде (все фото с танками были при пасмурной погоде, а без — в солнечную).
— Модель предсказывает болезнь, но оказывается, что она просто запомнила, в каких больницах делались анализы, а не сами медицинские показатели.
Почему это плохо:
—
—
Библиотека собеса по Data Science
❤4👍3🌚1
🔮 Можно ли считать, что модель, которая хорошо работает на данных прошлого, «понимает» будущее
Не совсем. Модель учится на исторических данных и выявляет в них закономерности. Но будущее может отличаться из-за новых факторов, изменений среды, смещения данных или неожиданных событий — это называется сдвигом распределения (data drift).
Поэтому даже высокая точность на старых данных не гарантирует успех в будущем. Модель «понимает» прошлое, но не обладает настоящим «интеллектом» или «прозрением». Чтобы быть надёжной, её нужно регулярно переобучать и тестировать на свежих данных.
Библиотека собеса по Data Science
Библиотека собеса по Data Science
❤2👍1
🤔 Может ли модель машинного обучения «обмануть» нас, даже если метрики говорят, что всё хорошо
Да — и делает это довольно часто. Модель может демонстрировать отличные метрики, но при этом решать не ту задачу, которую мы ей на самом деле поставили.
Примеры:
1️⃣ Модель для автоматического отбора резюме может использовать косвенные признаки, связанные не с квалификацией, а с демографией — например, местом жительства или формулировками, типичными для определённых групп.
2️⃣ Модель для детекции токсичных комментариев может научиться просто игнорировать сленг или грамматические ошибки, если их нет в тренировке, и при этом «наказывать» культурные диалекты.
3️⃣ Модель детектирует трещины на снимках труб, но в обучающих данных почти все трещины были сфотографированы в солнечную погоду — и модель на самом деле распознаёт освещение, а не дефекты.
Формально — всё отлично: log-loss низкий, ROC-AUC высокий. Но по сути — модель научилась «читерить». Это называют спурием-корреляциями (spurious correlations) и data leakage.
Библиотека собеса по Data Science
Примеры:
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍1
Среднеквадратичная ошибка (MSE) сильно
Huber loss — это гибрид MSE и MAE:
Это особенно полезно, когда:
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2