Warning: Undefined array key 0 in /var/www/tgoop/function.php on line 65

Warning: Trying to access array offset on value of type null in /var/www/tgoop/function.php on line 65
191 - Telegram Web
Telegram Web
Почему ты получаешь отказы после прохождения собеса? Или Алгоритм прохождения собесов 💪

Проблема:
Очень часто такое бывает, что человек проходит 1000 скринингов с HR`ом, 500 техничек и 100 финалок, но всё равно не получает оффер. А почему? Всё очень просто, нужно всего лишь попросить фидбек и исправить свои ошибки

Вроде бы это простая истина, но много моих учеников не понимают такого простого алгоритма:

1️⃣ Ходим на собесы 🍗
Чтобы получить оффер, нам нужно уметь проходить собеседования (оффер = вкачанный навык прохождения собеседования). Поэтому на данном этапе наша цель получить как можно больше приглашений на скрининг и попасть на следующие этапы собеседования.

2️⃣ Просим фидбек 😺
Если мы проебали на каком-то определённом этапе собеседования, то нам обязательно нужно попросить фидбек. Прям не бойтесь мучить HR`ом своими вопросами. Запомните, глупый вопрос это тот вопрос, который не спросили.
Независимо от этапа пишите сообщение вида:
Здравствуйте! Подскажите, пожалуйста, почему мне дали отказ? Для меня очень важно понять, где мои ошибки и пробелы в знаниях, поэтому прошу вас дать фидбек. Буду благодарен)

Также будет ОГРОМНЫМ плюсом, если вы будете записывать собеседование и потом его пересматривать. Хоть это и на первых порах будет вызывать дискомфорт, но результат не заставит долго ждать, если вы будете грамотно анализировать свои ошибки.

3️⃣ Анализируем фибдек 🎲
Тут мы получили фидбек и поняли, что мы не знаем, что такое 'операция умножения и сколько существует цифр'. Теперь мы рассматриваем это не как проблему, а как задачу и задать себе следующий вопрос: "А что я могу сделать, чтобы на следующем собеседовании не допустить такую ошибку?". Нужно понять, как мы можем это исправить.

4️⃣ Исправляем ошибки 🔨
Нам нужно найти материалы, статьи, видео в ютубе, которые помогут нам в решение данной задачи. Выучить это, сделать конспект, шпаргалку, но не допустить, чтобы это повторилось не повторилось на следующем собесе.
Мой пример: Я очень часто могу забыть какую-нибудь формулу, поэтому на собесах использую шпаргалку. Тогда стоит мне чуть взглянуть на неё, я сразу понимаю какой элемент за что отвечает.

Итог 🚶‍♀️
Повторю, получение оффера = навык проходить собесы; навык проходит собесы = повторение шагов 1-4. Выполняя эти простые действия, вы точно получите оффер!
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥21🍌64💯21❤‍🔥1
Итоги of the year и планы на next year 🥇

Чем ещё я буду вас радовать в следующем году 💪
1️⃣ Я выхожу на ютуб. Первое видео уже на стадии монтажа, там будет жёсткий МОК по ClassicML: линейная/логистическая регрессия, l1, l2, переобучение, метрики классификации. Также буду выкладывать записи с собесов, ещё МОКи и другие форматы роликов, короче, будет жёсткий движ
2️⃣ Больше/чаще/качественнее - планирую развивать ТГ-канал ещё больше, чтобы стать большим человеком в медийке, дальше-больше!
3️⃣ Развитие профессионализма/менторства/медийки - именно это три вектора, которые я буду развивать, а как следствие писать для вас об этом

Было проделано не мало работы над качеством и структурой постов и в целом над каналом 🚶‍♀️
- выработал собственный стиль постов: заголовок, подзаголовки, смайлики и смехуюшечки
- определился со своей ЦА в тг-канале: в основном я делаю контент для начинающий ребят, перекатунов и мидлов. В основном посты про найм, как/где/зачем найти работу в DS, выкладываю посты с объяснением материалов из серии "уничтожение" с надеждой, что их кто-то сохраняет и действительно читает
- по цифрам достиг ~930 подписоты к НГ, а в планах было 1к..., но ничего мы ещё добьём!

Надеюсь, что ваши цели в этом году были достигнуты, и вы уже поставили цели на следующий год! Буду вам очень благодарен, если напишите в комментах:
- Свою цель на 2024
- Насколько вы выполнили её в 2024
- И цель на 2025 год

Не стесняйтесь, давайте вместе подведём итоги года) 🤟
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥33🍌8👍4❤‍🔥2🎉1💩1
Вопросы, которые вам обязательно зададут на типичном собесе по ClassicML ч1

Все вопросы вы можете посмотреть в моём личном сборнике вопросов, там также есть вопросы не только по ClassicML, но и по NLP, CV и вопросы с компаний)

*️⃣Что такое линейная регрессия ?
Линейная регрессия — это метод прогнозирования, который ищет линейную зависимость между зависимой переменной y и независимыми переменными x. Модель описывается уравнением: y = w*x + b, где w - веса модели, а b - смещение.


*️⃣Как обучается линейная регрессия?
Обучение заключается в подборе коэффициентов w, b, минимизируя функцию потерь, например, среднеквадратичную ошибку (MSE). Методы оптимизации: градиентный спуск или аналитическое решение через нормальное уравнение.


*️⃣Какие плюсы и минусы линейной регрессии ?
Плюсы: может в тенденцию, интерпретируемость, быстрое обучение
Минусы: не работает с нелинейными зависимостями, чувствительна к выбросам


*️⃣Что такое переобучение? Как его обнаружить?
Переобучение — это ситуация, когда модель слишком хорошо подстраивается под обучающие данные, теряя способность обобщать на новые данные. Есть вероятность переобучения, если высокая точность на трейне, и низкая не тесте, а также сильно расходятся кривые обучения.


*️⃣Что такое регуляризация ? Какие виды её бывают, и чем они отличаются? Можешь ли графически интерпиртировать регуляризацию? Почему она помогает бороться с переобучением?
Картинка 1, 2
Регуляризация — это метод добавления штрафа в функцию потерь для уменьшения сложности модели.
L1-регуляризация (Lasso): добавляет штраф на сумму модулей коэффициентов.
L2-регуляризация (Ridge): добавляет штраф на сумму квадратов коэффициентов.
Графическая интерпретация:
L1-регуляризация (Lasso): штраф создает ромбовидный контур ограничений. Это приводит к тому, что веса некоторых признаков могут становиться равными нулю, делая модель разреженной.
L2-регуляризация (Ridge): штраф формирует круговые контуры ограничений. Это приводит к тому, что веса уменьшаются равномерно, сохраняя все признаки в модели, но снижая их вклад.
Почему помогает: Уменьшает влияние нерелевантных признаков и сложных моделей.


*️⃣Какие методы борьбы с переобучением?
- Регуляризация (L1, L2).
- Уменьшение сложности модели путём отбора фичей
- Добавление больше чистых данных.
- Кросс-валидация.


*️⃣Что такое Cross-Validation? TimeSeries-Cross-Validation?
Картинка 3, 4
Кросс-валидация (CV) — метод оценки качества модели через разбиение данных на тренировочные и валидационные наборы (например, K-Fold).
TimeSeries-CV: используется для временных рядов, учитывает временную зависимость. Пример: sliding window или expanding window.
Please open Telegram to view this post
VIEW IN TELEGRAM
🍌13❤‍🔥9👍2🔥21
Вопросы, которые вам обязательно зададут на типичном собесе по ClassicML ч2

Все вопросы вы можете посмотреть в моём личном сборнике вопросов, там также есть вопросы не только по ClassicML, но и по NLP, CV и вопросы с компаний)

*️⃣Что такое логистическая регрессия? Как получить из линейной регрессии логистическую регрессию?
Картинка 1
Логистическая регрессия - Модель для классификации, прогнозирующая вероятность принадлежности объекта к классу.
Чтобы получить логистическую регрессию, в функцию сигмоиду (картинка) подставляют линейную комбинацию признаков z = w*x+b. Таким образом, линейная модель используется как вход для сигмоидной функции, чтобы спрогнозировать вероятность.


*️⃣Что такое отступ в логистической регрессии?
Отступ — это значение wx+b, то есть отступ в логистической регрессии m = wx+b. Он показывает, на сколько далеко (в терминах линейного пространства) точка находится от гиперплоскости. Если m > 0, то точка относится к классу 1, если m < 0, то точка относится к классу 0. Это означает, что точки, которые дальше от гиперплоскости, дают более вероятностные предсказания (ближе к 0 или 1).


*️⃣Какие существуют метрики регрессии?
Картинка 2
MSE (Mean Squared Error) — Среднеквадратичная ошибка:
Плюсы: Сильно штрафует большие ошибки, что полезно, если они критичны.
Минусы: Чувствительна к выбросам.

MAE (Mean Absolute Error) — Средняя абсолютная ошибка:
Плюсы: Менее чувствительна к выбросам, чем MSE.
Минусы: Сложнее оптимизировать, так как модуль функции не дифференцируем в нуле.

R² (Коэффициент детерминации) - Показывает, какая доля дисперсии целевой переменной объясняется моделью. Значение от 0 до 1, где 1 — идеальная модель.

RMSE (Root Mean Squared Error) — Корень из среднеквадратичной ошибки:
Интерпретируемость выше, так как метрика имеет те же единицы измерения, что и целевая переменная.

MAPE (Mean Absolute Percentage Error) — Средняя абсолютная процентная ошибка.
MAPE измеряет среднюю относительную ошибку в процентах, показывая, насколько сильно предсказание модели отклоняется от реальных значений.


*️⃣Какие бывают метрики классификации?
Картинка 3
Метрики: Accuracy, Precision, Recall, F1-Score, ROC-AUC, PR-AUC


*️⃣Что такое ROC-AUC, PR-AUC? Каковы их плюсы и минусы?
Картинка 4
- ROC-AUC показывает, насколько хорошо модель может отличить один класс от другого, другими словами, это вероятность того насколько модель может хорошо отранжировать один класс от другого. Чем ближе значение к 1, тем лучше. Если ROC-AUC = 0.5, модель угадывает случайно, ROC-AUC = 0, то модель предсказывает все положительные классы как нули, а нули как положительные. Чувствительна к дисбалансу классов.

- PR-AUC показывает, как хорошо модель находит положительные объекты и насколько точно она это делает. Особенно полезна, если положительных объектов мало (несбалансированные данные).


*️⃣Когда лучше использовать Precision и Recall? Дай реальные кейсы
- Recall важен, когда ошибки FN критичны (определение рака, нам страшно, если модель сказала, что человек здоров (y_pred=0), но на самом деле он болен раком (y_true = 1)).
- Precision важен, когда ошибки FP критичны (поиск спама в почте, нам страшно, если модель сказала, что сообщение спам (y_pred=1), но на самом деле это не спам (y_true=0), тога важное сообщение уйдёт в корзину).
Please open Telegram to view this post
VIEW IN TELEGRAM
🍌6❤‍🔥4👍31🥰1
Вопросы, которые вам обязательно зададут на типичном собесе по ClassicML ч3

Все вопросы вы можете посмотреть в моём личном сборнике вопросов, там также есть вопросы не только по ClassicML, но и по NLP, CV и вопросы с компаний)


*️⃣Какие есть методы многоклассовой классификации?
Картинка 1
One-vs-All: Строится одна модель для каждого класса, отделяя его от всех остальных. Пример: Классификация фруктов (яблоко, банан, апельсин). Для каждого фрукта строится модель типа: [фрукт_i, не_фрукт_i]
- модель 1: Яблоко vs Не Яблоко
- модель 2: Банан vs Не Банан
- модель 3: Апельсин vs Не Апельсин

Картинка 2
All-vs-All: Строится модель для каждой пары классов.
- модель 1: Яблоко vs Банан
- модель 2: Яблоко vs Апельсин
- модель 3: Банан vs Апельсин


*️⃣Какие существуют плюсы и минусы One vs All и All vs All?
One-vs-All:
Плюсы: Простота, требует меньше моделей (N моделей для N классов).
Минусы: Может быть сложнее справляться с несбалансированными данными, поэтому требует калибровки моделей.

One-vs-One:
Плюсы: Хорошо работает для сложных данных, меньше проблем с несбалансированностью.
Минусы: Требует больше моделей (N(N−1)/2), что увеличивает вычислительную сложность.


*️⃣ Какие существуют метрики для многоклассовой классификации?
Картинка 3
Картинка 4
Микро усреднение - представьте, что у нас три confusion матрицы, в микро мы сначала считаем сумму TP, FP на основе всех этих трёх матриц, у нас получается TP_сумм=TP_1 + TP_2 + TP_3, FP_сумм=FP_1 + FP_2 + FP_3. А потом на основе средних этих средних считаем Precision_микро = TP_сумм/(TP_сумм+FP_сумм).

Картинка 5
Макро усреднение - есть три confusion матрицы, в макро мы сначала считаем Precision на основе каждой матрицы. А потом на основе этих метрик считаем считаем Precision_ср = (Precision_1 + Precision_2 + Precision_3)/3.

Картинка 6
На микро усреднении мы можем позволить себе ошибиться на маленьких классах, так как вклад каждого класса пропорционален его размеру.
На макро мы не можем себе это позволить, там нет пропорции
Please open Telegram to view this post
VIEW IN TELEGRAM
🍌62🔥2
ЖЁСТКОЕ Собеседование Middle Data Science | Classic ML | Реальные задачи с собеседований

Записал собеседование со своим учеником, где постарался прям жёстко подушить его вопросами, также построили Precision, Recall, ROC-AUC ручками - https://youtu.be/AsHMSRIVzLE

Разбираем:
*️⃣ Линейная и логистическая регрессия
*️⃣ Precision, Recall, ROC-AUC "на пальцах"
*️⃣ Регуляризации L1, L2 и ElasticNet
*️⃣ Метрики классификации и их применение в реальных задачах
*️⃣ Считаем ручками Precision, Recall и ROC-AUC

Смотрим и проверяем себя!
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥35🍌8👍31❤‍🔥1🥰1
2025/07/09 16:30:26
Back to Top
HTML Embed Code: