Forwarded from N + 1
Модели на основе ИИ и машинного обучения еще не достигли идеальной точности, но уже могут соперничать с опытными врачами в диагностике по изображениям. Рассказываем, почему нельзя просто взять и научить ИИ находить опухоль со стопроцентной вероятностью
#ПартнерскийМатериал | #Медицина | #IT | *4.7
#ПартнерскийМатериал | #Медицина | #IT | *4.7
👍3🔥2
Однажды, после черной-черной пятницы, когда осенние скидки уже закончились, а новогодние распродажи еще и не думали начинаться, преподаватель курса «Машинное обучение в биологии и биомедицине» получил на проверку вот такое домашнее задание, и был очень... удивлен.
А вы сможете догадаться, что именно так удивило нашего преподавателя?
Спойлер: самые внимательные смогутзаписаться на весенний поток курса «Машинное обучение в биологии и биомедицине» со скидкой 20% , но только до 9 декабря 🙃
#в_openbio_тоже_шутят
А вы сможете догадаться, что именно так удивило нашего преподавателя?
Спойлер: самые внимательные смогут
#в_openbio_тоже_шутят
😁6🔥2🤓2
Media is too big
VIEW IN TELEGRAM
📈 Построение успешной карьеры (и особенно выход на руководящие должности) требует постоянного развития навыков, причем важно уделять внимание не только hard skills, но и soft skills. И сфера биоинформатики — не исключение.
Сегодня мы поделимся с вами фрагментом интервью одного из спикеров курса «Машинное обучение в биологии и биоинформатике» Александра Сарачакова, в котором Александр рассказывает о своем походе к сложным, многоуровневым задачам.
Кстати, у вас еще есть возможность узнать больше про опыт и карьерный трек Александра на новом онлайн-вебинаре из серии «Личный путь в сеньора биоинформатика»!
📌 Встреча состоится уже завтра, 10 декабря, в 19:00 по Мск.
Регистрируйтесь, чтобы получить ссылку-приглашение на вебинар, а вопросы для Александра оставляйте в комментариях к этому посту.
До встречи в прямом эфире!
#openbio_webinar
#openbio_interview
#openbio_expert
Сегодня мы поделимся с вами фрагментом интервью одного из спикеров курса «Машинное обучение в биологии и биоинформатике» Александра Сарачакова, в котором Александр рассказывает о своем походе к сложным, многоуровневым задачам.
Кстати, у вас еще есть возможность узнать больше про опыт и карьерный трек Александра на новом онлайн-вебинаре из серии «Личный путь в сеньора биоинформатика»!
📌 Встреча состоится уже завтра, 10 декабря, в 19:00 по Мск.
Регистрируйтесь, чтобы получить ссылку-приглашение на вебинар, а вопросы для Александра оставляйте в комментариях к этому посту.
До встречи в прямом эфире!
#openbio_webinar
#openbio_interview
#openbio_expert
👍6🔥4⚡3
На нашем канале уже появилось несколько относительно продвинутых материалов по Python и pandas, но что делать, если вы еще вообще не брались за изучение питона или забыли некоторые основные темы?
В этом посте мы собрали несколько бесплатных полезных источников, которые помогут вам подтянуть самые базовые принципы программирования на Python, от теории до практики. С этими знаниями вы легко сориентируетесь в дальнейших темах, которые мы рассмотрим на курсе «Машинное обучение в биологии и биомедицине»!
📚 Python for Data Analysis, Wes McKinney
Учебник по питону от популярного издательства O’Reilly, доступный онлайн в html формате, подробно объясняет принципы работы как Python в целом, так и отдельных библиотек, включая pandas, matplotlib и другие.
Из личного опыта методиста OpenBio: примеры кода и сопровождающие их объяснения в этой книге помоглиоткрыть третий глаз глубоко разобраться в сути отдельных команд и лучше усвоить несколько тем, раньше казавшихся сложными.
📚 Видеоуроки Python на YouTube
Если вам удобнее воспринимать информацию в видео формате, то на помощь придет YouTube. Вот лишь пара примеров каналов, на русском и английском языках, которые содержат подробные разборы методов и библиотек Python и не только.
📚 Документация
Максимально простой в плане доступности, но, возможно, не в плане восприятия, способ ознакомиться с Python и его библиотеками – прочитать официальную документацию, которая хранится в открытом доступе. Хотя в документации можно найти подробнейшее описание любой функции и примеров ее использования, информация может быть представлена в довольно сухом техническом виде, сложном для восприятия.
Плюсом является то, что документация часто содержит так называемые quick start guides для начинающих, которые предлагают вводные уроки и простые примеры. Такие есть, например, для библиотек pandas и matplotlib.
📚 Онлайн сборники упражнений по питону
А если вы уже чувствуете уверенность в своих навыках программирования и рветесь пустить их в ход, обратите внимание на сайты вроде Hackinscience, Practice Python и введение в pandas от LeetCode, которые предлагают упражнения и задачи по питону с разными уровнями сложности. Практика рождает совершенство, поэтому не бойтесь пробовать себя в решениях!
#openbio_python #openbio_pandas #openbio_practice
В этом посте мы собрали несколько бесплатных полезных источников, которые помогут вам подтянуть самые базовые принципы программирования на Python, от теории до практики. С этими знаниями вы легко сориентируетесь в дальнейших темах, которые мы рассмотрим на курсе «Машинное обучение в биологии и биомедицине»!
📚 Python for Data Analysis, Wes McKinney
Учебник по питону от популярного издательства O’Reilly, доступный онлайн в html формате, подробно объясняет принципы работы как Python в целом, так и отдельных библиотек, включая pandas, matplotlib и другие.
Из личного опыта методиста OpenBio: примеры кода и сопровождающие их объяснения в этой книге помогли
📚 Видеоуроки Python на YouTube
Если вам удобнее воспринимать информацию в видео формате, то на помощь придет YouTube. Вот лишь пара примеров каналов, на русском и английском языках, которые содержат подробные разборы методов и библиотек Python и не только.
📚 Документация
Максимально простой в плане доступности, но, возможно, не в плане восприятия, способ ознакомиться с Python и его библиотеками – прочитать официальную документацию, которая хранится в открытом доступе. Хотя в документации можно найти подробнейшее описание любой функции и примеров ее использования, информация может быть представлена в довольно сухом техническом виде, сложном для восприятия.
Плюсом является то, что документация часто содержит так называемые quick start guides для начинающих, которые предлагают вводные уроки и простые примеры. Такие есть, например, для библиотек pandas и matplotlib.
📚 Онлайн сборники упражнений по питону
А если вы уже чувствуете уверенность в своих навыках программирования и рветесь пустить их в ход, обратите внимание на сайты вроде Hackinscience, Practice Python и введение в pandas от LeetCode, которые предлагают упражнения и задачи по питону с разными уровнями сложности. Практика рождает совершенство, поэтому не бойтесь пробовать себя в решениях!
А если обилие источников вызывает у вас вопросы из серии «с чего же мне начать?» или «что теперь со всем этим делать?», то:
приглашаем вас сегодня, 10 декабря в 19:00 по Мск на вебинар с Александром Сарачаковым (Team Leader команды Imaging & Deep learning в BostonGene, преподаватель курса «Машинное обучение в
биологии и биомедицине»).
Александр расскажет про свой опыт построения карьеры в сфере биоинформатики, а также ответит на ваши вопросы!
✍️ Пишите ваши вопросы в комментариях к этому посту, чтобы они точно были озвучены в эфире.
❗️Регистрируйтесь на сайте, и после обязательно подключите нашего чат-бота, чтобы получить ссылку на эфир.
#openbio_python #openbio_pandas #openbio_practice
👍7🔥3🤓2
Статистический анализ в Python📊
В прошлых постах мы познакомились с основами работы с данными в pandas: фильтрацией значений, предварительной обработкой датасетов, группировкой и агрегацией данных.
Мы уже можем замечать интересные распределения или неожиданные закономерности в наших данных, но как подтвердить наши догадки? 🤔 На помощь придет статистический анализ!
Чувствуете в себе силы и желание погрузиться в эту область глубже? Тогда ждем вас на курсе «Машинное обучение в биологии и биомедицине»!
#openbio_python
В прошлых постах мы познакомились с основами работы с данными в pandas: фильтрацией значений, предварительной обработкой датасетов, группировкой и агрегацией данных.
Мы уже можем замечать интересные распределения или неожиданные закономерности в наших данных, но как подтвердить наши догадки? 🤔 На помощь придет статистический анализ!
Чувствуете в себе силы и желание погрузиться в эту область глубже? Тогда ждем вас на курсе «Машинное обучение в биологии и биомедицине»!
#openbio_python
👍5😍2⚡1🤓1
Друзья! Мы разобрали несколько тем по Python и отдельным библиотекам, чтобы вооружиться необходимыми перед стартом курса «Машинное обучение в биологии и биомедицине» от OpenBio знаниями.
Для того, чтобы сделать будущие посты еще более эффективными, нам важна ваша обратная связь.🤝
Поэтому мы предлагаем поделиться вашими впечатлениями о последних материалах по Python с помощью опросов, которые будут ниже👇. А если вам тесно в рамках опроса, ждем ваши вопросы, замечания и наблюдения в комментариях к этому посту!
В благодарность за уделенное время, каждому, кто поделится мнением в опросе или в комментариях, мы пришлем гайд со списком литературы и ресурсов по изучению ML.📕
Всем удачных исследований и хорошей пятницы 😉
#openbio_опрос
Для того, чтобы сделать будущие посты еще более эффективными, нам важна ваша обратная связь.
Поэтому мы предлагаем поделиться вашими впечатлениями о последних материалах по Python с помощью опросов, которые будут ниже👇. А если вам тесно в рамках опроса, ждем ваши вопросы, замечания и наблюдения в комментариях к этому посту!
В благодарность за уделенное время, каждому, кто поделится мнением в опросе или в комментариях, мы пришлем гайд со списком литературы и ресурсов по изучению ML.
Всем удачных исследований и хорошей пятницы 😉
#openbio_опрос
Please open Telegram to view this post
VIEW IN TELEGRAM
edu.openbio.ru
Машинное обучение в биологии и биомедицине
Курсы по машинному обучению в биологии и биомедицине
👍4⚡1🔥1
Насколько понятны материалы по Python, которые сейчас публикуются?
Anonymous Poll
46%
Все понятно, можно усложнить!
29%
Все понятно, в самый раз
4%
Скорее понятно, но есть сложности
14%
Иногда понятно, иногда нет
0%
Скорее непонятно
7%
Ничего не понятно😭