K1SAMANI_CHANNEL Telegram 331
🔷 حدس بزن

مسابقه‌ای به شکل زیر بین تعداد زیادی شرکت‌کننده برگزار می‌شود:

هر شرکت‌کننده باید از میان اعداد صفر تا ۱۰۰ یکی را انتخاب کند. برنده کسی است که عددش به دوسوم میان‌گین اعداد انتخاب‌شده نزدیک‌تر باشد. این قواعد پیش از آغاز مسابقه به اطلاع همهٔ شرکت‌کنندگان می‌رسد.

اگر شما یکی از شرکت‌کننده‌ها باشید چه عددی را انتخاب می‌کنید؟

همهٔ ما هرروزه ناگزیریم انتخاب کنیم. بیایید فرض کنیم واقعاً خودمان انتخاب می‌کنیم و در انتخاب‌هایمان هم آزادی کامل داریم. حتی در این‌صورت هم نتیجه‌ای که به‌دست می‌آوریم فقط حاصل انتخاب خودمان نیست. نتیجه‌ای که به‌دست می‌آوریم حاصل انتخاب ما و انتخاب دیگران است. همین گزارهٔ ساده هستهٔ اصلی نظریهٔ بازی¹ را تشکیل می‌دهد. برای انتخاب بهترین راهبرد (استراتژی)، یعنی راهبردی که بیشترین امتیاز را برایمان بیاورد، باید بتوانیم برآورد درستی از انتخاب‌های دیگران هم داشته باشیم. طبیعتاً دیگران هم همین کار را می‌کنند. این برآوردها بر چه اساسی صورت می‌گیرد؟ در نظریهٔ بازی فرض می‌شود که همهٔ شرکت‌کنندگان رفتار عقلانی دارند. در‌ضمن همه می‌دانند که همه رفتار عقلانی دارند و همه می‌دانند که همه می‌دانند که همه رفتار عقلانی دارند و ... .

حالا با این فرض‌ها نگاهی به مسئلهٔ بالا می‌اندازیم. در گام اول اگر فرض کنیم که هر شرکت‌کننده یکی از اعداد صفر تا ۱۰۰ را به‌تصادف انتخاب کند، میان‌گین اعداد چیزی در حدود ۵۰ خواهد شد. پس برای برنده‌شدن بهترین انتخاب ۳۳ است. اما دیگران هم می‌توانند همین فرض را بکنند و آن‌وقت همه ۳۳ را انتخاب خواهند کرد. به‌این‌ترتیب میان‌گین اعداد انتخاب‌شده ۳۳ می‌شود و بنابراین برای برنده شدن باید ۲۲ را انتخاب کرد! خب، دیگران هم لابد همین فکرها را می‌کنند. اگر به‌همین ترتیب ادامه دهیم نهایتاً به این نتیجه می‌رسیم که عقلانی‌ترین انتخاب صفر است! در نظریهٔ بازی به این وضعیت تعادل نش² گفته می‌شود.

آیا در عمل هم همین اتفاق می‌افتد؟ نه! رفتار انسان‌ها، در عمل، صرفاً تابع منطق نیست؛ احساسات، وضعیت روحی‌-روانی و بسیاری عوامل غیرعقلانی دیگر هم در رفتار انسان‌ها تأثیر دارد. این همان چیزی است که به آن عقلانیت محدود³ می‌گویند.

برگردیم به مسابقه. قدمت این مسئله بیش از ۴۰ سال است و مطالعات زیادی روی آن انجام شده است. مثلاً در یکی از این مطالعات نشان داده می‌شود که افراد به‌طور معمول در دنبالهٔ استدلالی فوق برای پیش‌بینی رفتار دیگران یک تا دو مرحله بیشتر پیش نمی‌روند [1]. ریچارد تیلر (برندهٔ جایزهٔ نوبل اقتصاد سال ۲۰۱۷) در سال ۱۹۹۷ از مجلهٔ فایننشیال تایمز خواست چنین مسابقه‌ای را بین خوانندگانش برگزار کند [2]. جایزه‌ای معادل ۱۰۰۰۰ دلار هم برایش تعیین شد. نتیجه چه بود؟ هرچند تعدادی صفر و یک بین اعداد انتخاب‌شده وجود داشت ولی بیشترین بسامد را عدد ۳۳ داشت و بعد از آن ۲۲. میان‌گین اعداد هم ۱۸٫۹۱ بود که دوسوم آن می‌شود ۱۲٫۶. پس کسی که ۱۳ را انتخاب کرده بود برنده بود؛ نتیجه‌ای که با مطالعات مرجع [1] هم سازگاری داشت.

▪️برای انتخاب بهترین راهبرد باید بتوانیم پیش‌بینی یا برآورد خوبی از رفتار دیگران داشته باشیم. این تقریباً همه‌جا صادق است، چه در تعاملات اجتماعی، چه در فعالیت‌های اقتصادی و چه در روابط میان کشورها.
ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
1. Game Theory
2. Nash Equilibrium
3. Bounded Rationality

پ. ن.: مسئلهٔ مسابقهٔ حدس عدد را ابتدا در کتاب «هنر پیش‌بینی» نوشتهٔ فیلیپ تتلاک و دن گاردنر دیدم. این کتاب را انتشارات دنیای اقتصاد با ترجمهٔ محمدحسن جعفری سهامیه منتشر کرده است.

مراجع:
[1] Nagel R., 'Unraveling in Guessing Games: An Experimental Study', The American Economic Review, 85, 1313-1326 (1995).
[2] Thaler R. H., 'From Homo Economicus to Homo Sapiens', Journal of Economic Perspectives, 14, 133-141 (2000).

@k1samani_channel



tgoop.com/k1samani_channel/331
Create:
Last Update:

🔷 حدس بزن

مسابقه‌ای به شکل زیر بین تعداد زیادی شرکت‌کننده برگزار می‌شود:

هر شرکت‌کننده باید از میان اعداد صفر تا ۱۰۰ یکی را انتخاب کند. برنده کسی است که عددش به دوسوم میان‌گین اعداد انتخاب‌شده نزدیک‌تر باشد. این قواعد پیش از آغاز مسابقه به اطلاع همهٔ شرکت‌کنندگان می‌رسد.

اگر شما یکی از شرکت‌کننده‌ها باشید چه عددی را انتخاب می‌کنید؟

همهٔ ما هرروزه ناگزیریم انتخاب کنیم. بیایید فرض کنیم واقعاً خودمان انتخاب می‌کنیم و در انتخاب‌هایمان هم آزادی کامل داریم. حتی در این‌صورت هم نتیجه‌ای که به‌دست می‌آوریم فقط حاصل انتخاب خودمان نیست. نتیجه‌ای که به‌دست می‌آوریم حاصل انتخاب ما و انتخاب دیگران است. همین گزارهٔ ساده هستهٔ اصلی نظریهٔ بازی¹ را تشکیل می‌دهد. برای انتخاب بهترین راهبرد (استراتژی)، یعنی راهبردی که بیشترین امتیاز را برایمان بیاورد، باید بتوانیم برآورد درستی از انتخاب‌های دیگران هم داشته باشیم. طبیعتاً دیگران هم همین کار را می‌کنند. این برآوردها بر چه اساسی صورت می‌گیرد؟ در نظریهٔ بازی فرض می‌شود که همهٔ شرکت‌کنندگان رفتار عقلانی دارند. در‌ضمن همه می‌دانند که همه رفتار عقلانی دارند و همه می‌دانند که همه می‌دانند که همه رفتار عقلانی دارند و ... .

حالا با این فرض‌ها نگاهی به مسئلهٔ بالا می‌اندازیم. در گام اول اگر فرض کنیم که هر شرکت‌کننده یکی از اعداد صفر تا ۱۰۰ را به‌تصادف انتخاب کند، میان‌گین اعداد چیزی در حدود ۵۰ خواهد شد. پس برای برنده‌شدن بهترین انتخاب ۳۳ است. اما دیگران هم می‌توانند همین فرض را بکنند و آن‌وقت همه ۳۳ را انتخاب خواهند کرد. به‌این‌ترتیب میان‌گین اعداد انتخاب‌شده ۳۳ می‌شود و بنابراین برای برنده شدن باید ۲۲ را انتخاب کرد! خب، دیگران هم لابد همین فکرها را می‌کنند. اگر به‌همین ترتیب ادامه دهیم نهایتاً به این نتیجه می‌رسیم که عقلانی‌ترین انتخاب صفر است! در نظریهٔ بازی به این وضعیت تعادل نش² گفته می‌شود.

آیا در عمل هم همین اتفاق می‌افتد؟ نه! رفتار انسان‌ها، در عمل، صرفاً تابع منطق نیست؛ احساسات، وضعیت روحی‌-روانی و بسیاری عوامل غیرعقلانی دیگر هم در رفتار انسان‌ها تأثیر دارد. این همان چیزی است که به آن عقلانیت محدود³ می‌گویند.

برگردیم به مسابقه. قدمت این مسئله بیش از ۴۰ سال است و مطالعات زیادی روی آن انجام شده است. مثلاً در یکی از این مطالعات نشان داده می‌شود که افراد به‌طور معمول در دنبالهٔ استدلالی فوق برای پیش‌بینی رفتار دیگران یک تا دو مرحله بیشتر پیش نمی‌روند [1]. ریچارد تیلر (برندهٔ جایزهٔ نوبل اقتصاد سال ۲۰۱۷) در سال ۱۹۹۷ از مجلهٔ فایننشیال تایمز خواست چنین مسابقه‌ای را بین خوانندگانش برگزار کند [2]. جایزه‌ای معادل ۱۰۰۰۰ دلار هم برایش تعیین شد. نتیجه چه بود؟ هرچند تعدادی صفر و یک بین اعداد انتخاب‌شده وجود داشت ولی بیشترین بسامد را عدد ۳۳ داشت و بعد از آن ۲۲. میان‌گین اعداد هم ۱۸٫۹۱ بود که دوسوم آن می‌شود ۱۲٫۶. پس کسی که ۱۳ را انتخاب کرده بود برنده بود؛ نتیجه‌ای که با مطالعات مرجع [1] هم سازگاری داشت.

▪️برای انتخاب بهترین راهبرد باید بتوانیم پیش‌بینی یا برآورد خوبی از رفتار دیگران داشته باشیم. این تقریباً همه‌جا صادق است، چه در تعاملات اجتماعی، چه در فعالیت‌های اقتصادی و چه در روابط میان کشورها.
ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
1. Game Theory
2. Nash Equilibrium
3. Bounded Rationality

پ. ن.: مسئلهٔ مسابقهٔ حدس عدد را ابتدا در کتاب «هنر پیش‌بینی» نوشتهٔ فیلیپ تتلاک و دن گاردنر دیدم. این کتاب را انتشارات دنیای اقتصاد با ترجمهٔ محمدحسن جعفری سهامیه منتشر کرده است.

مراجع:
[1] Nagel R., 'Unraveling in Guessing Games: An Experimental Study', The American Economic Review, 85, 1313-1326 (1995).
[2] Thaler R. H., 'From Homo Economicus to Homo Sapiens', Journal of Economic Perspectives, 14, 133-141 (2000).

@k1samani_channel

BY دِرَنـــگ


Share with your friend now:
tgoop.com/k1samani_channel/331

View MORE
Open in Telegram


Telegram News

Date: |

“Hey degen, are you stressed? Just let it all out,” he wrote, along with a link to join the group. How to create a business channel on Telegram? (Tutorial) Telegram users themselves will be able to flag and report potentially false content. On Tuesday, some local media outlets included Sing Tao Daily cited sources as saying the Hong Kong government was considering restricting access to Telegram. Privacy Commissioner for Personal Data Ada Chung told to the Legislative Council on Monday that government officials, police and lawmakers remain the targets of “doxxing” despite a privacy law amendment last year that criminalised the malicious disclosure of personal information. To edit your name or bio, click the Menu icon and select “Manage Channel.”
from us


Telegram دِرَنـــگ
FROM American