#ЛогическиеЗадачи
Приходит время каникул, и можно отвлечься от образовательных задач для того, чтобы отдохнуть, решая логические головоломки. Логические задачи на выяснение вопроса: «Кто есть кто?» Предметная область данных задач - персонажи, отвечающие на вопросы Главного Героя (решающего задачу) или сообщающие информацию о предметной области. Причем ответы должны быть односложными (строго да либо нет), а сообщения - высказываниями. Каждому из объектов рассматриваемой предметной области присваивается собственное имя: А, Б, В и так далее.
Приходит время каникул, и можно отвлечься от образовательных задач для того, чтобы отдохнуть, решая логические головоломки. Логические задачи на выяснение вопроса: «Кто есть кто?» Предметная область данных задач - персонажи, отвечающие на вопросы Главного Героя (решающего задачу) или сообщающие информацию о предметной области. Причем ответы должны быть односложными (строго да либо нет), а сообщения - высказываниями. Каждому из объектов рассматриваемой предметной области присваивается собственное имя: А, Б, В и так далее.
❤10🤡2❤🔥1✍1
Каждый из персонажей имеет одно из свойств: 1) отвечая на любые вопросы всегда говорить только правду, т.е. произносить только истинные высказывания – людей, имеющих это свойство обычно называют рыцарями; 2) отвечая на любые вопросы всегда лгать, т.е. произносить только ложные высказывания – людей, имеющих это свойство обычно называют лжецами; 3) отвечая на любые вопросы иногда говорить правду, а иногда лгать – таких персонажей обычно называют нормальными людьми.
❤6❤🔥3✍2🤡1
#ЛогическиеЗадачи
Будем говорить, что задача имеет решение, если существует единственное приписывание значений высказываниям, содержащимся в условии, которое не противоречит самим условиям; задача не имеет решения, если при приписывании любых значений высказываниям из условия задачи (при любой интерпретации) получается противоречие с условиями задачи.
Задача считается неправильно построенной, если существует два или более двух вариантов приписывания истинностных значений высказываниям персонажей, при которых выполняются все условия задачи.
Будем говорить, что задача имеет решение, если существует единственное приписывание значений высказываниям, содержащимся в условии, которое не противоречит самим условиям; задача не имеет решения, если при приписывании любых значений высказываниям из условия задачи (при любой интерпретации) получается противоречие с условиями задачи.
Задача считается неправильно построенной, если существует два или более двух вариантов приписывания истинностных значений высказываниям персонажей, при которых выполняются все условия задачи.
❤8✍2❤🔥1
Доказуемость и выводимость
В формальной системе (или в формальной теории) доказательство - это непустая последовательность формул, каждая из которых является аксиомой или формулой полученной из одной или двух предыдущих по какому-нибудь правилу вывода. Последняя формула в доказательстве называется доказанной формулой или теоремой. Вывод от доказательства отличается тем, что его исходные формулы - посылки не обязательно должны быть аксиомами или теоремами, иначе понятие доказательства совпадёт с понятием выводимости.
В формальной системе (или в формальной теории) доказательство - это непустая последовательность формул, каждая из которых является аксиомой или формулой полученной из одной или двух предыдущих по какому-нибудь правилу вывода. Последняя формула в доказательстве называется доказанной формулой или теоремой. Вывод от доказательства отличается тем, что его исходные формулы - посылки не обязательно должны быть аксиомами или теоремами, иначе понятие доказательства совпадёт с понятием выводимости.
❤4✍2
Формальные теории (исчисление высказываний, исчисление предикатов и формальную арифметику) будем считать полными, если всякая общезначимая формула в них является теоремой, и наоборот, всякая теорема является общезначимой формулой (т.е. тождественно истинной формулой на любой предметной области).
✍5❤2
Например, выводя формулу В из формул А и Если А, то В по модусу поненс (Modus Ponens), т.е. по единственному правилу вывода для исчисления высказываний, мы получаем её как результат вывода, но формула В сама по себе вовсе не обязательно будет теоремой исчисления высказываний.
Иными словами, формула В окажется выводимой в исчислении высказываний, но не будет считаться доказуемой, или теоремой.
Иными словами, формула В окажется выводимой в исчислении высказываний, но не будет считаться доказуемой, или теоремой.
❤4✍1⚡1
В вышеуказанном случае формула В может оказаться и теоремой, но тогда и только тогда, когда формулы А и Если А, то В тоже окажутся теоремами.
❤5✍1
Это означает, что для исчисления высказываний и для исчисления предикатов (но, пожалуй, не для формальной арифметической системы) существуют такие формулы (пропозициональные буквы, отрицания пропозициональных букв, предикатные буквы с приданными предметными константами и без свободных переменных), которые не являются ни доказуемыми, ни противоречивыми.
⚡4