Warning: Undefined array key 0 in /var/www/tgoop/function.php on line 65

Warning: Trying to access array offset on null in /var/www/tgoop/function.php on line 65
1353 - Telegram Web
Telegram Web
🔥 Главное с OpenAI DevDay 2025

✔️ App SDK
Позволяет создать нативные приложенийяпрямо внутри ChatGPT.

Идея простая: теперь не нужно выходить из ChatGPT, чтобы делать привычные вещи.
Можно прямо в чате работать с дизайном в Figma, создавать презентации в Canva, искать жильё на Booking или смотреть курсы на Coursera — всё в одном окне.

Платформа поддерживает авторизацию, оплату и подключение внешних сервисов,
а значит, ChatGPT становится центром, где совмещаются ИИ, приложения и автоматизация задач.

Скоро разработчики (вайбкодеры) смогут добавлять свои приложения и зарабатывать на них через ChatGPT SDK.

✔️Agent Builder

По сути это убийца n8n и Zapier.
Это интуитивно понятный**визуальный конструктор**, где можно создавать своих ИИ-агентов без единой строчки кода.
Просто перетаскиваешь блоки, подключаешь MCP и ChatKit — и агент сам ищет файлы, анализирует данные и выполняет задачи.
Инструмент уже доступен всем.
OpenAi умеют в дизайн, должно быть удобно.
Можно уже попробовать: https://platform.openai.com/agent-builder

✔️ Обновили Codex

Вышел из беты, получил интеграцию со Slack и собственный SDK.
На демо агент управлял светом и экраном голосом - без кода.

На презентации заявили, что теперь почти весь их код пишется с помощью Codex

Благодаря Codex разработчики OpenAI стали отправлять на 70% больше pull-request’ов в неделю, чем раньше.

Теперь у кодекса появляется интеграция со Slack и SDK, чтобы разработчики могли встраивать его в свои рабочие процессы.

Прямо в эфире Codex написал код для управления камерой, сам собрал интерфейс и **запустил готовое при

✔️ GPT-5 Pro - доступна по API

$15 за ввод и $120 за вывод за 1M токенов

Gpt-realtime-mini - на 70% дешевле, подходит для мгновенных ответов и потоковых задач

✔️ Sora 2 - будет доступна по API.

Можно будет генерировать видео прямо из кода

PS: Agent Builder выглядит действительно интересно - интуитивный, гибкий, инструмент с большим потенциало
м.
А вот насколько полезными окажутся приложения внутри ChatGPT, не особо понятно.

OpenAI не боится экспериментировать.
Они развивают ChatGPT как платформу, ищут
новые варианты захвата рынка и пробуют смелые идеи. Это дорогого стоит.

Их интерфейс просто топ: минимализм, аккуратность, почти в духе Apple. UX - на уровне искусства.

У OpenAI уже более 800 млн активных пользователей в неделю и они обрабатывают 6 миллиардов токенов в минуту!

К концу года число пользователей, похоже, вплотную подойдёт к 1 миллиарду.

Но гонка только начинается.
Google явно готовит ответ - Gemini 3 обещает быть топом. Другие игроки тоже не дремлют.

@ai_machinelearning_big_data


#openai #chatgpt #llm #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
✔️ Google выпустили EmbeddingGemma - открытую модель эмбеддингов для локальных AI-приложений

Google объявил о запуске новой модели EmbeddingGemma, созданной для работы прямо на устройствах - без подключения к интернету. Модель на 308 миллионов параметров, поддерживает более 100 языков и показывает лучшие результаты среди всех открытых моделей размером до 500 млн параметров по тесту MTEB.

После квантования модель кушает менее 200 МБ оперативной памяти, а генерация эмбеддингов занимает всего около 20 миллисекунд на устройствах с EdgeTPU.

Google внедрил технологию Matryoshka Representation Learning, позволяющую использовать разные размеры векторов - от 768 до 128 - в зависимости от задач и ресурсов устройства. Контекстное окно достигает 2000 токенов.

EmbeddingGemma уже интегрируется с популярными инструментами вроде SentenceTransformers, Llama.cpp, LangChain и Transformers.js, а её веса открыты для использования и коммерческой адаптации.
googleblog

✔️ Kani-TTS-370M - лёгкая и быстрая открытая модель синтеза речи

Вышла новая open-source модель Kani-TTS-370M, создающая естественное и выразительное звучание при крайне высокой скорости работы. Модель насчитывает 370 миллионов параметров и оптимизирована под потребительские GPU, включая RTX 3060, где она обеспечивает реальное время генерации речи.

Kani-TTS построена на сочетании NanoCodec и LFM2-350M, что обеспечивает компактность и качество, сравнимое с крупными нейронными TTS-системами. Разработчики использовали современные нейросетевые методы синтеза речи, чтобы добиться максимально естественной интонации и чистоты звучания.

Главный акцент сделан на эффективности и универсальности - модель легко разворачивается локально, подходит для встраивания в ассистентов, игровых персонажей и офлайн-озвучку, не требуя облачных вычислений.
HF

✔️Adobe прогнозирует рост AI-покупок в интернете на 520 % в период праздников 2025

По оценкам Adobe Analytics, объем онлайн-продаж в США в праздничный сезон 2025 года достигнет $253,4 млрд, что на 5,3 % больше, чем в прошлом году. AI-трафик при этом вырастет на 520 %, особенно в последние 10 дней перед Днём благодарения.

Почти половина американцев намерены воспользоваться AI-инструментами: 53 % - для поиска товаров, 40 %- для рекомендаций, 36 % — для поиска выгодных предложений, 30 % — чтобы вдохновиться идеями подарков.

Мобильные устройства останутся доминирующей платформой - 56,1 % транзакций пройдут с телефона. Среди драйверов роста - скидки (среднее снижение цен до 28 %), сервисы «купи сейчас, заплати позже» и активность в соцсетях, чья рекламная отдача вырастет на 51 %.
techcrunch

✔️ Kaleido: новая система для фотореалистичного нейронного рендеринга объектов и сцен.

Модель обучается не на 3D-структурах, а чисто на видео и многовидовых данных, что делает её универсальной и масштабируемой.

Kaleido превосходит все предыдущие генеративные модели в задачах с малым числом видов и впервые достигает качества рендеринга уровня InstantNGP в zero-shot режиме. Это шаг к гибкому world modeling, способному как точно реконструировать реальность, так и дорисовывать недостающие детали.
shikun

✔️ OpenAI и AMD заключили стратегическое партнерство: 6 гигаватт GPU и опцион на 10 % акций

OpenAI и AMD объявили масштабное сотрудничество: по условиям соглашения OpenAI развернёт 6 гигаватт графических процессоров AMD, начиная с первой волны - 1 гигаватт Instinct MI450 во второй половине 2026 года.

AMD, чтобы выровнять интересы, выдала OpenAI варрант на 160 млн своих акций, который будет реализован по мере достижения этапов развертывания и роста стоимости компании, что может превратить его в ~10 % долю.

Соглашение может принести AMD десятки миллиардов долларов дохода, а также усилить её позиции на рынке чипов для искусственного интеллекта.

Этот шаг позволяет OpenAI диверсифицировать аппаратные поставки и снизить зависимость от одного производителя, а также закладывает мощную основу для масштабных AI-инфраструктур следующих лет.
openai

@ai_machinelearning_big_data


#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Google выпустили Jules Tools - новую консольную утилиту и API для управления своим AI-агентом прямо из терминала.

Jules - это ИИ, который умеет писать код, исправлять ошибки и создавать тесты для ваших проектов.

Он подключается к GitHub или другому репозиторию, анализирует кодовую базу и выполняет задачи, которые вы ему задаёте.

С помощью Jules Tools можно запускать и управлять этим агентом напрямую через терминал, без браузера.

Пример, вводите:
jules remote new --session "fix login bug"

После запуска команда создаёт виртуальную машину, клонирует репозиторий, решает задачу и отправляет pull request с готовым исправлением.

Что интересного:
- Командная строка и API для управления агентом
- Асинхронные задачи и параллельное выполнение
- Скрипты и автоматизация (через CI, cron, pipelines)
- Память и адаптация под ваш стиль кода
- Безопасное хранение ключей и токенов
- Интерактивный интерфейс в терминале (TUI) с отображением статуса задач в реальном времени

TUI-режим напоминает веб-панель, но работает прямо в консоли, позволяя быстро запускать, отслеживать и управлять сессиями.

Jules можно интегрировать с Slack или системами сборки - агент сам создаёт и выполняет задачи, пока вы занимаетесь другими делами.

Если агент сталкивается с проблемой, то приостанавливает работу и запрашивает помощь, а не «угадывает» решение.

Обе утилиты - Jules и Gemini CLI - работают на Gemini 2.5 Pro, но Jules ориентирован на короткие и точные задачи, а Gemini CLI - на длительную совместную работу.

Бесплатная версия позволяет запускать 15 задач в день (до 3 одновременно).

Платные тарифы - $19.99 и $124.99 - дают лимиты до 100 и 300 задач.

Google также планирует добавить поддержку GitLab, Bitbucket и локальных проектов без Git.

🟠Подробности: https://developers.googleblog.com/en/level-up-your-dev-game-the-jules-api-is-here/
🟠Доки: https://jules.google/docs

@ai_machinelearning_big_data


#Google #Jules #AI #CodingAgent #Gemini25Pro #Automation
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
✔️ Ученый Google получил Нобелевскую премию по физике 2025

Мишель Деворе (Michel Devoret), главный научный сотрудник команды Google Quantum AI, стал лауреатом Нобелевской премии по физике 2025 года.

Он разделил награду с Джоном Мартинесом (бывшим сотрудником Google Quantum AI) и Джоном Кларком из Калифорнийского университета в Беркли.

Премия присуждена за исследования макроскопических квантовых эффектов, которые стали фундаментом для создания сверхпроводящих кубитов - ключевой технологии в квантовых компьютерах.

Для Google это исторический момент: теперь в числе сотрудников и выпускников компании уже пять лауреатов Нобелевской премии, включая Демиса Хассабиса и Джеффри Хинтона, отмеченных в 2024 году.
google

✔️ Oracle потеряла $100 млн на аренде GPU-чипов Nvidia Blackwell

По данным *The Information*, Oracle понесла убытки около $100 млн за прошлый квартал из-за аренды чипов Blackwell.
Маржа серверного проката составила всего около 16%.

Бизнес по аренде GPU оказывается сложным:
скорее всего, дело не в падении спроса, а в сильном давлении на маржу - клиенты активно торгуются и сбивают цены.
theinformation

✔️ Новая модель от Liquid AI: LFM2-8B-A1B - это первый MoE-вариант в линейке LFM2, оптимизированная для эйдж устройств.

Модель содержит 8.3 млрд параметров, из которых активно только 1.5 млрд на токен, что даёт качество уровня 3–4B плотных моделей, но при этом она быстрее Qwen3-1.7B.

Модель показала себя отлично на 16 банчмарках:
она обгоняет LFM2-2.6B и модели аналогичного размера, особенно в задачах математики, кода и творческого письма.
huggingface

✔️ Deloitte внедряет Claude от Anthropic для 470 000 сотрудников

Deloitte объявила о крупнейшем корпоративном внедрении AI в истории Anthropic - Claude теперь станет рабочим инструментом для 470 000 сотрудников по всему миру.

Компания создаёт отраслевые версии Claude для бухгалтеров и разработчиков, а также откроет Claude Center of Excellence и сертифицирует 15 000 специалистов. В фокусе - прозрачность и соответствие нормам, с опорой на фреймворк Trustworthy AI.

Любопытно, что накануне Deloitte признала, что использовала ИИ в официальном отчёте правительства Австралии, где оказались поддельные цитаты и ссылки, и согласилась вернуть часть контракта на $440 000.
TechCrunch

✔️ Neuralink и xAI объединили усилия: человек управляет роботизированной рукой силой мысли

Пациент Nick Wray стал первым, кто с помощью Neuralink PRIME BCI смог управлять роботизированной рукой напрямую с помощью мозга. Он рассказал, что впервые за многие годы смог сам надеть шляпу, разогреть еду и поесть без помощи.

В проекте участвует и xAI Илонa Маска: система Grok помогает Neuralink усиливать нейроинтерфейс — от преобразования мыслей в текст и ускоренной коммуникации до синтезированного голоса и долгосрочной цели — когнитивного соединения человека и ИИ на бинарном уровне.

Многие задаются вопросом: станет ли Grok 5 шагом к слиянию человеческого сознания и искусственного интеллекта?

Это одно из самых вдохновляющих достижений в истории нейротехнологий — шаг к возвращению физической независимости людям и, возможно, к новой эре взаимодействия человека и ИИ.
Видео

✔️ ElevenLabs представила Agent Workflows - визуальный редактор для построения ИИ-агентов

Компания ElevenLabs представила Agent Workflows - инструмент, который позволяет визуально проектировать логику диалогов и взаимодействие агентов на платформе Agents.

Теперь вместо громоздкого единого агента можно создавать Subagents - специализированных подзадачных агентов с собственными промптами, базами знаний и инструментами.

С помощью Workflows можно задавать, когда агент передаёт управление подагенту, а когда подключает человеческого оператора. Это делает систему более гибкой и безопасной.

Кроме того, Workflows обеспечивают надёжное подключение к корпоративным системам, управление бизнес-логикой и умную маршрутизацию диалогов, что помогает снизить затраты, задержки и повысить точность ответов.
elevenlabs

@ai_machinelearning_big_data


#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🧩 Новая архитектура нейросетей от Samsung: Tiny Recursive Model (TRM) - обошла DeepSeek-R1, Gemini 2.5 Pro и o3-mini в задачах рассуждения ARC-AGI 1 и ARC-AGI 2.

✔️ Размер модели - всего 7 миллионов параметров и около 1000 обучающих примеров.

Это меньше в 10 000 раз, чем у современных LLM, но результат лучше.

Как работает TRM:

1️⃣ Черновой ответ: модель сразу формирует быстрый набросок решения, а не пишет его по словам.
2️⃣ Скрачпад: создаёт внутреннее пространство для логики и промежуточных рассуждений.
3️⃣ Самокритика: многократно (6 раз) проверяет свои рассуждения, уточняя и исправляя ошибки.
4️⃣ Переписывание: на основе улучшённой логики создаёт новую, более точную версию ответа.
5️⃣ Цикличность: повторяет процесс до 16 раз, пока не достигнет уверенного, логически цельного решения.

💡 Чем интересна модель:

- Меньше затрат на вычисления, а результат выше; высокая эффективность при низких издержках.
- Доказательство того, что собственная логика и архитектура могут быть сильнее простого размера модели. Можно коротко описать ее: «думай, прежде чем действовать».
- Мощные рассуждающие системы становятся доступными даже без огромных кластеров, модель можно запускать на ограниченных ресурсах.

Это не просто «компактаная LLM», это другой способ мышления: модель, которая действительно *думает, прежде чем говорить*.

🟠Статья: https://arxiv.org/abs/2510.04871v1
🟠Github: https://github.com/SamsungSAILMontreal/TinyRecursiveModels

@ai_machinelearning_big_data

#TinyRecursiveModels #TRM #DeepLearning #NeuralNetworks
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🖥 Что нового в Python 3.14 и почему стоит перейти

Python 3.14 вышел 7 октября 2025 года. Это новый стабильный релиз, который содержит как изменения в самом языке, так и улучшения в реализации, стандартной библиотеке, отладке и взаимодействии с многопоточностью.

Ниже - обзор ключевых нововведений, их смысла, применимости и возможных подводных камней.

🟠Основные нововведения (Release highlights)

- Отложенная (ленивая) оценка аннотаций - теперь аннотации не вычисляются сразу, что уменьшает накладные расходы.
- Поддержка нескольких интерпретаторов в рамках одного процесса через новый модуль.
- Новый синтаксис шаблонных строк (t-strings), который даёт больше контроля над статической и интерполированной частью.
- Более информативные сообщения об ошибках (например, подсказки для опечаток в ключевых словах).
- Поддержка формата сжатия Zstandard в стандартной библиотеке.
- Улучшенные возможности для отладки и профилирования, в том числе подключение к живому процессу без остановки.
- Улучшения в asyncio — команды для визуализации и диагностики задач, стеков ожидания и зависимостей.
- Уменьшение пауз сборщика мусора (gc) через инкрементальный сбор.
- Подсветка синтаксиса и автодополнение модулей в интерактивном режиме (REPL) по умолчанию.

🟠 Подробности и примеры

Ленивые аннотации - deferred evaluation of annotations

Раньше аннотации (для типов, документации, подсказок) могли вызывать вычисления прямо при определении функции или класса. Теперь они хранятся в виде «ленивых» структур и вычисляются по надобности. Это снижает накладные расходы на загрузку кода, особенно если аннотации сложные или содержат много forward-ссылок.

Есть модуль annotationlib, который позволяет исследовать аннотации программно и выбирать формат их получения — строки, объекты или отложенные ссылки.

Когда это особенно помогает:
- большие фреймворки, генерация кода, ORM, библиотеки с множеством аннотаций;
- ускорение импорта при старте приложений;
- уменьшение накладных расходов при работе с типами.

Что проверить при миграции:
- код, использующий __annotations__ напрямую, может требовать адаптации;
- убедитесь, что сторонние библиотеки, работающие с аннотациями, поддерживают новый формат.

Несколько интерпретаторов (subinterpreters)

Теперь в Python можно запускать несколько независимых интерпретаторов внутри одного процесса (модуль `concurrent.interpreters`).

Преимущества:
- изоляция между интерпретаторами (отдельная память, отдельный GIL);
- параллелизм на многоядерных системах;
- меньше накладных расходов, чем при использовании multiprocessing.

Ограничения:
- не все C-расширения поддерживают мультиинтерпретацию;
- коммуникация между интерпретаторами требует явных каналов (очереди, сообщения).

Это даёт реальную возможность распараллеливания CPU-задач без запуска отдельных процессов.

Template string literals (t-strings)

Новое синтаксическое средство — префикс t перед строкой, аналогично f'...'.
Результат — объект Template, который хранит текст и вставки по отдельности.


variety = 'Stilton'
template = t'Try some {variety} cheese!'


- Подробности
- Скачать
- Видеообзор

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
✔️ Ling-1T - новая модель от inclusionAI с 1 триллионом параметров

Главная идея модель: соединить эффективность и масштаб рассуждений в одной архитектуре.

🟠**Ключевые факты**
- Всего параметров: 1 трлн, из них ≈ 50 млрд активны на токен (MoE-архитектура).
- Обучена на 20 трлн+ токенов, специально отобранных для задач логического мышления и рассуждений.

Контекст: 128 000 токенов.
Внутри Evo-CoT (Evolutionary Chain of Thought) и Linguistics-Unit RL - новые методы обучения для масштабируемых рассуждений.

Ling-1T- позиционируется, как модель с балансом между скоростью и точностью ответов.

Моделька демонстрирует сильные результаты в задачах кода, математики, логики и фронтенд-генерации.

В архитектуре задействованы Mixture-of-Experts (1/32 активация), MTP слои и маршрутизация экспертов.

Ling-1T показывает, что огромные модели можно сделать не только мощными, но и экономичными.

https://huggingface.co/inclusionAI/Ling-1T

@ai_machinelearning_big_data

#Ling1T #AI #ML #OpenSource #Reasoning #TrillionScale #FP8
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
2025/10/25 07:06:10
Back to Top
HTML Embed Code: