This media is not supported in your browser
VIEW IN TELEGRAM
Из окон офисов VK — самые красивые закаты. А в самих офисах обитают самые любимые коллеги!
Ребята не только делают сервисы VK быстрее и удобнее, но и любят делиться знаниями. Совсем скоро они проведут открытый Java AI-митап и расскажут о том, как мы масштабируем процессы, а ещё поделятся фишками, которые стоят за сервисами VK.
Откликайтесь, если откликается!
Ребята не только делают сервисы VK быстрее и удобнее, но и любят делиться знаниями. Совсем скоро они проведут открытый Java AI-митап и расскажут о том, как мы масштабируем процессы, а ещё поделятся фишками, которые стоят за сервисами VK.
Откликайтесь, если откликается!
🥱13👍3😁3❤2🤨1💊1
This media is not supported in your browser
VIEW IN TELEGRAM
Что нового
- Читает длинные отчёты и создаёт аудиофайлы
- Удобное упарвление голосом: можно слушать, давать команды и одновременно делать другие дела
- Генерирует подкасты
- Озвучивает доки и презентации и многое другое
Когда удобнее слушать, чем читать — включите Manus и продолжайте работу.
https://audio.manus.space
Please open Telegram to view this post
VIEW IN TELEGRAM
👏4❤1👍1
Для амбициозных бакалавров и молодых специалистов
Хочешь развиваться осознанно и расти в профессии и доходе? Выбирай высшее образование у сильных экспертов.
Центральный университет ведет набор на пять программ магистратуры по популярным ИТ-направлениям. Обучение с фокусом на практике: студенты используют актуальный софт и решают реальные задачи от бизнес-заказчиков.
Партнеры — ведущие компании на рынке РФ: ВТБ, Сбер, Т-Банк, Яндекс, Avito, Ozon, Х5 Tech и другие. 62% магистрантов ЦУ находят новую работу с ростом зарплаты в 1,6 раза уже на первом курсе. Средняя зарплата — 195 тысяч рублей.
Обучение можно совмещать с работой, а поступить — уже с третьего курса.
Выбери свое направление:
— Онлайн-магистратура по ML.
— Продуктовая аналитика.
— Машинное обучение.
— Продуктовый менеджмент.
— Backend-разработка.
И подавай заявку на поступление уже сейчас.
Реклама. АНО ВО "Центральный университет", ИНН 7743418023, erid:2RanynhVH6Z
Хочешь развиваться осознанно и расти в профессии и доходе? Выбирай высшее образование у сильных экспертов.
Центральный университет ведет набор на пять программ магистратуры по популярным ИТ-направлениям. Обучение с фокусом на практике: студенты используют актуальный софт и решают реальные задачи от бизнес-заказчиков.
Партнеры — ведущие компании на рынке РФ: ВТБ, Сбер, Т-Банк, Яндекс, Avito, Ozon, Х5 Tech и другие. 62% магистрантов ЦУ находят новую работу с ростом зарплаты в 1,6 раза уже на первом курсе. Средняя зарплата — 195 тысяч рублей.
Обучение можно совмещать с работой, а поступить — уже с третьего курса.
Выбери свое направление:
— Онлайн-магистратура по ML.
— Продуктовая аналитика.
— Машинное обучение.
— Продуктовый менеджмент.
— Backend-разработка.
И подавай заявку на поступление уже сейчас.
Реклама. АНО ВО "Центральный университет", ИНН 7743418023, erid:2RanynhVH6Z
❤1😁1🍌1
🔥 TorchOpt — мощная библиотека для дифференцируемой оптимизации, построенная поверх PyTorch. Она предлагает три режима дифференцирования (явный, неявный и нулевого порядка), что делает её универсальным инструментом для задач, где требуется оптимизация с учётом градиентов, включая метаобучение и двууровневую оптимизацию.
Библиотека сочетает гибкость функционального подхода с привычным объектно-ориентированным API PyTorch. Это позволяет легко интегрировать её в существующие проекты, не жертвуя производительностью. TorchOpt поддерживает распределённые вычисления через PyTorch RPC и ускоренные операции на CPU/GPU, что особенно полезно для масштабируемых экспериментов.
🤖 GitHub
@machinelearning_interview
Библиотека сочетает гибкость функционального подхода с привычным объектно-ориентированным API PyTorch. Это позволяет легко интегрировать её в существующие проекты, не жертвуя производительностью. TorchOpt поддерживает распределённые вычисления через PyTorch RPC и ускоренные операции на CPU/GPU, что особенно полезно для масштабируемых экспериментов.
🤖 GitHub
@machinelearning_interview
🔥6❤3👍3
Forwarded from Machinelearning
Исследователи из из Гонконгского университета и инженеры Alibaba научили LLM генерировать семантически разные ответы, заставляя их «думать» в ортогональных направлениях.
Наверняка каждый, кто работает с LLM, сталкивался с их любовью к самоповторам. Запрашиваешь несколько вариантов решения, а получаешь одну и ту же мысль, просто перефразированную.
Стандартные подходы к декодированию,
temperature sampling
или diverse beam search
, создают лишь лексическое разнообразие, но пасуют, когда требуется семантическое. Это серьезная проблема для Best-of-N или RLHF. Ведь без по-настоящему разных идей и подходов к решению задачи эти методы теряют свою силу: выбирать лучший вариант не из чего, а обучать модель на однотипных примерах неэффективно.Решение предложили в методе SemDiD (Semantic-guided Diverse Decoding). Его суть, если кратко, перестать играть с токенами на поверхности и начать управлять генерацией напрямую в пространстве эмбеддингов.
Сначала, на старте, он принудительно направляет разные группы beams по ортогональным векторам в семантическом пространстве. Грубо говоря, это как дать команду разным поисковым группам двигаться строго на север, юг и запад, чтобы они гарантированно разошлись.
По мере генерации, когда жесткие директивы могут стать неоптимальными, включается второй механизм -
inter-group repulsion
. Он просто следит, чтобы смысловые траектории ответов не сближались, сохраняя их уникальность до самого конца.Но как, гоняясь за разнообразием, не получить на выходе бессвязный бред?
SemDiD подходит к контролю качества уникально. Он не пытается слепо максимизировать вероятность последовательности, а использует ее лишь как нижнюю границу, чтобы отсечь совсем уж плохие варианты.
Кроме того, алгоритм корректирует системные искажения, когда вероятность токенов искусственно завышается в зависимости от их позиции в тексте.
Для баланса между качеством и разнообразием используется адаптивный механизм на основе гармонического среднего, который в каждый момент времени уделяет больше внимания той метрике, которая проседает.
На бенчмарках для Best-of-N, от MMLU-Pro+ до GSM8K, SemDiD увеличивает покрытие (шанс найти верный ответ) на 1.4%-5.2% по сравнению с аналогами.
Генерируя для GRPO или RLOO семантически богатые наборы ответов, SemDiD предоставляет им более качественный материал для обучения. Это ускоряет сходимость на 15% и повышает финальную точность моделей.
@ai_machinelearning_big_data
#AI #ML #LLM #SemDiD
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9👍7🔥4
⚡️ Почему лучшие разработчики всегда на шаг впереди?
Потому что они знают, где брать настоящие инсайд!
Оставь “программирование в вакууме” в прошлом, выбирай свой стек — подпишись и погружайся в поток идей, лайфхаков и знаний, которые не найдёшь в открытом доступе.
ИИ: www.tgoop.com/ai_machinelearning_big_data
Python: www.tgoop.com/pythonl
Linux: www.tgoop.com/linuxacademiya
Мл собес www.tgoop.com/machinelearning_interview
C++ www.tgoop.com/cpluspluc
Docker: www.tgoop.com/DevopsDocker
Хакинг: www.tgoop.com/linuxkalii
МЛ: www.tgoop.com/machinelearning_ru
Devops: www.tgoop.com/DevOPSitsec
Data Science: www.tgoop.com/data_analysis_ml
Javascript: www.tgoop.com/javascriptv
C#: www.tgoop.com/csharp_ci
Java: www.tgoop.com/java_library
Базы данных: www.tgoop.com/sqlhub
Python собеседования: www.tgoop.com/python_job_interview
Мобильная разработка: www.tgoop.com/mobdevelop
Golang: www.tgoop.com/Golang_google
React: www.tgoop.com/react_tg
Rust: www.tgoop.com/rust_code
ИИ: www.tgoop.com/vistehno
PHP: www.tgoop.com/phpshka
Android: www.tgoop.com/android_its
Frontend: www.tgoop.com/front
Big Data: www.tgoop.com/bigdatai
МАТЕМАТИКА: www.tgoop.com/data_math
Kubernets: www.tgoop.com/kubernetc
Разработка игр: https://www.tgoop.com/gamedev
Физика: www.tgoop.com/fizmat
SQL: www.tgoop.com/databases_tg
Папка Go разработчика: www.tgoop.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.tgoop.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.tgoop.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.tgoop.com/addlist/mzMMG3RPZhY2M2Iy
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
😆ИТ-Мемы: www.tgoop.com/memes_prog
🇬🇧Английский: www.tgoop.com/english_forprogrammers
🧠ИИ: www.tgoop.com/vistehno
🖥 Chatgpt для кода в тг: @Chatgpturbobot
📕Ит-книги: https://www.tgoop.com/addlist/BkskQciUW_FhNjEy
💼ИТ-вакансии www.tgoop.com/addlist/_zyy_jQ_QUsyM2Vi
Подпишись, чтобы всегда знать, куда двигаться дальше!
Потому что они знают, где брать настоящие инсайд!
Оставь “программирование в вакууме” в прошлом, выбирай свой стек — подпишись и погружайся в поток идей, лайфхаков и знаний, которые не найдёшь в открытом доступе.
ИИ: www.tgoop.com/ai_machinelearning_big_data
Python: www.tgoop.com/pythonl
Linux: www.tgoop.com/linuxacademiya
Мл собес www.tgoop.com/machinelearning_interview
C++ www.tgoop.com/cpluspluc
Docker: www.tgoop.com/DevopsDocker
Хакинг: www.tgoop.com/linuxkalii
МЛ: www.tgoop.com/machinelearning_ru
Devops: www.tgoop.com/DevOPSitsec
Data Science: www.tgoop.com/data_analysis_ml
Javascript: www.tgoop.com/javascriptv
C#: www.tgoop.com/csharp_ci
Java: www.tgoop.com/java_library
Базы данных: www.tgoop.com/sqlhub
Python собеседования: www.tgoop.com/python_job_interview
Мобильная разработка: www.tgoop.com/mobdevelop
Golang: www.tgoop.com/Golang_google
React: www.tgoop.com/react_tg
Rust: www.tgoop.com/rust_code
ИИ: www.tgoop.com/vistehno
PHP: www.tgoop.com/phpshka
Android: www.tgoop.com/android_its
Frontend: www.tgoop.com/front
Big Data: www.tgoop.com/bigdatai
МАТЕМАТИКА: www.tgoop.com/data_math
Kubernets: www.tgoop.com/kubernetc
Разработка игр: https://www.tgoop.com/gamedev
Физика: www.tgoop.com/fizmat
SQL: www.tgoop.com/databases_tg
Папка Go разработчика: www.tgoop.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.tgoop.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.tgoop.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.tgoop.com/addlist/mzMMG3RPZhY2M2Iy
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
😆ИТ-Мемы: www.tgoop.com/memes_prog
🇬🇧Английский: www.tgoop.com/english_forprogrammers
🧠ИИ: www.tgoop.com/vistehno
📕Ит-книги: https://www.tgoop.com/addlist/BkskQciUW_FhNjEy
💼ИТ-вакансии www.tgoop.com/addlist/_zyy_jQ_QUsyM2Vi
Подпишись, чтобы всегда знать, куда двигаться дальше!
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍1
🦠 Как писать код так, чтобы open-source проект рос сам по себе (как колония бактерий)
Неожиданный, но полезный принцип: код стоит писать как бактерии пишут ДНК.
Звучит странно, но у природы за миллиарды лет выработался стиль, который идеально подходит для быстрого роста и масштабирования. И он отлично ложится на open-source.
Что делает "бактериальный код" особенным:
– Он маленький — потому что каждая строка «стоит энергии»
– Он модульный — код разбит на независимые блоки (как опероны в генах)
– Он самодостаточный — кусок кода можно просто скопировать и вставить в другой проект, без зависимостей
Теперь представьте, что ваш код читают как библиотеку сниппетов.
Можно ли выдернуть одну функцию — и она сразу принесёт пользу?
Можно ли вставить ваш класс в чужой проект — и он просто заработает?
Если да, значит код "бактериальный" — и это хорошо.
Почему это работает:
Такой код легко распространяется, переиспользуется, адаптируется. Люди могут взять только нужное, не вникая в архитектуру всего проекта. И это ключ к живому open-source: когда код «живет отдельно от автора».
Теперь про монорепы.
Сложные проекты всё равно требуют структуры — как организм требует согласованной работы органов.
Это уже стиль "эукариот" — более крупный, связанный, менее гибкий, но подходящий для системного масштаба.
Вывод:
Хочешь сложную платформу — строй "монорепу".
Хочешь, чтобы твой open-source проект рос, развивался и жил без тебя — пиши код как бактерии:
маленько, модульно, автономно, копируемо.
Это стиль, который колонизировал всё: от термальных источников до вакуума в космосе. И он работает.
▶️ Оригинал пост от Karpathy
#opensource #кодстиль #cleanCode #dev #community #softwaredesign
Неожиданный, но полезный принцип: код стоит писать как бактерии пишут ДНК.
Звучит странно, но у природы за миллиарды лет выработался стиль, который идеально подходит для быстрого роста и масштабирования. И он отлично ложится на open-source.
Что делает "бактериальный код" особенным:
– Он маленький — потому что каждая строка «стоит энергии»
– Он модульный — код разбит на независимые блоки (как опероны в генах)
– Он самодостаточный — кусок кода можно просто скопировать и вставить в другой проект, без зависимостей
Теперь представьте, что ваш код читают как библиотеку сниппетов.
Можно ли выдернуть одну функцию — и она сразу принесёт пользу?
Можно ли вставить ваш класс в чужой проект — и он просто заработает?
Если да, значит код "бактериальный" — и это хорошо.
Почему это работает:
Такой код легко распространяется, переиспользуется, адаптируется. Люди могут взять только нужное, не вникая в архитектуру всего проекта. И это ключ к живому open-source: когда код «живет отдельно от автора».
Теперь про монорепы.
Сложные проекты всё равно требуют структуры — как организм требует согласованной работы органов.
Это уже стиль "эукариот" — более крупный, связанный, менее гибкий, но подходящий для системного масштаба.
Вывод:
Хочешь сложную платформу — строй "монорепу".
Хочешь, чтобы твой open-source проект рос, развивался и жил без тебя — пиши код как бактерии:
маленько, модульно, автономно, копируемо.
Это стиль, который колонизировал всё: от термальных источников до вакуума в космосе. И он работает.
#opensource #кодстиль #cleanCode #dev #community #softwaredesign
Please open Telegram to view this post
VIEW IN TELEGRAM
X (formerly Twitter)
Andrej Karpathy (@karpathy) on X
How to build a thriving open source community by writing code like bacteria do 🦠. Bacterial code (genomes) are:
- small (each line of code costs energy)
- modular (organized into groups of swappable operons)
- self-contained (easily "copy paste-able" via…
- small (each line of code costs energy)
- modular (organized into groups of swappable operons)
- self-contained (easily "copy paste-able" via…
❤16👍3🔥3
🚀Kafka must-have инструмент для современных проектов MLOps!
Присоединяйся к вебинару и узнай, как настроить Kafka для обработки потоковых данных и интегрировать её в MLOps-проекты. Вебинар проходит в рамках подписки на курсы OTUS, которая даёт возможность приобрести 3 курса по цене одного.
🔑 Что будет:
— Практическое и теоретическое руководство по настройке Kafka в Docker и взаимодействию с ней через Python.
— Обзор инструментов для работы с Kafka: поднятие UI-интерфейса и управление потоками данных.
— Примеры использования Kafka для связи микросервисов и обзор ключевых функций, делающих её незаменимой брокером сообщений.
— Как использовать Kafka в MLOps: сбор данных для ML-моделей, мониторинг их работы и интеграция предсказаний в реальном времени.
🚀Регистрация по ссылке - https://otus.pw/18rU/
Подробнее о подписке OTUS - https://otus.pw/SMQu/
👉 Запишись сейчас, количество мест ограничено!
Присоединяйся к вебинару и узнай, как настроить Kafka для обработки потоковых данных и интегрировать её в MLOps-проекты. Вебинар проходит в рамках подписки на курсы OTUS, которая даёт возможность приобрести 3 курса по цене одного.
🔑 Что будет:
— Практическое и теоретическое руководство по настройке Kafka в Docker и взаимодействию с ней через Python.
— Обзор инструментов для работы с Kafka: поднятие UI-интерфейса и управление потоками данных.
— Примеры использования Kafka для связи микросервисов и обзор ключевых функций, делающих её незаменимой брокером сообщений.
— Как использовать Kafka в MLOps: сбор данных для ML-моделей, мониторинг их работы и интеграция предсказаний в реальном времени.
🚀Регистрация по ссылке - https://otus.pw/18rU/
Подробнее о подписке OTUS - https://otus.pw/SMQu/
👉 Запишись сейчас, количество мест ограничено!
❤4👍2
🧬 Чат-боты ИИ в 5 раз повысили шанс создания биооружия.
Риск глобальной пандемии вырос с 0.3% до 1.5%.
Исследователи показали: топовые ИИ помогают обойти сложные лабораторные этапы и дают точные инструкции, которые раньше были доступны только экспертам.
Теперь даже непрофессионалы могут собрать опасный вирус.
🔒 Что делать:
1. ИИ должен отказываться отвечать на опасные запросы, быть устойчивым к джейлбрейкам и не распространяться в открытом виде без ограничений.
2. Лаборатории обязаны проверять заказы на синтетические гены и подтверждать личности клиентов.
Если внедрить эти меры — риск почти вернётся к прежнему уровню.
Учёные призывают внедрять такие правила до, а не после кризиса.
📌 Подробнее
Риск глобальной пандемии вырос с 0.3% до 1.5%.
Исследователи показали: топовые ИИ помогают обойти сложные лабораторные этапы и дают точные инструкции, которые раньше были доступны только экспертам.
Теперь даже непрофессионалы могут собрать опасный вирус.
🔒 Что делать:
1. ИИ должен отказываться отвечать на опасные запросы, быть устойчивым к джейлбрейкам и не распространяться в открытом виде без ограничений.
2. Лаборатории обязаны проверять заказы на синтетические гены и подтверждать личности клиентов.
Если внедрить эти меры — риск почти вернётся к прежнему уровню.
Учёные призывают внедрять такие правила до, а не после кризиса.
📌 Подробнее
❤9👍6🔥4😴1
📊 AI4TS — энциклопедия по анализу временных рядов с помощью ИИ. Этот масштабный GitHub-репозиторий собрал всё, что нужно для работы с временными рядами: от свежих исследований с NeurIPS и ICML до практических руководств по аномалиям и прогнозированию.
Автор не просто перечисляет публикации, а структурирует их по годам, конференциям и задачам — будь то классификация, обнаружение аномалий или прогнозирование. Проект включает не только PDF-статьи, но и ссылки на официальные реализации моделей вроде Time-LLM или iTransformer. Раздел с обзорными работами помогает быстро погрузиться в тему, например, через сравнение методов на основе трансформеров или графовых нейросетей.
🤖 GitHub
@machinelearning_interview
Автор не просто перечисляет публикации, а структурирует их по годам, конференциям и задачам — будь то классификация, обнаружение аномалий или прогнозирование. Проект включает не только PDF-статьи, но и ссылки на официальные реализации моделей вроде Time-LLM или iTransformer. Раздел с обзорными работами помогает быстро погрузиться в тему, например, через сравнение методов на основе трансформеров или графовых нейросетей.
🤖 GitHub
@machinelearning_interview
🔥6👍5🥰2
This media is not supported in your browser
VIEW IN TELEGRAM
NLP-специалисты, три главных слова для вас — One Day Offer!
12 июля сразу три команды Сбера станут на несколько талантливых коллег больше: AI Solutions для Управления Благосостоянием, блок Стратегии и развития в Москве, а также Центр перспективных AI-разработок в индустриях в Сочи.
Если и вы хотите обучать большие языковые модели, создавать агентные и мультиагентные системы и заниматься другими масштабными проектами — регистрируйтесь на One Day Offer по ссылке.
Ждём встречи и уже готовим для вас рабочее место! 😉
12 июля сразу три команды Сбера станут на несколько талантливых коллег больше: AI Solutions для Управления Благосостоянием, блок Стратегии и развития в Москве, а также Центр перспективных AI-разработок в индустриях в Сочи.
Если и вы хотите обучать большие языковые модели, создавать агентные и мультиагентные системы и заниматься другими масштабными проектами — регистрируйтесь на One Day Offer по ссылке.
Ждём встречи и уже готовим для вас рабочее место! 😉
🔥3
📚 Awesome-Pytorch-list — исчерпывающая коллекция ресурсов вокруг PyTorch. В этом репозитории собраны сотни инструментов, туториалов и реализаций статей, связанных с PyTorch. Проект охватывает все направления: от компьютерного зрения и NLP до гауссовских процессов и рекомендательных систем.
Особенно полезен раздел с готовыми имплементациями моделей вроде BERT, Tacotron и OpenNMT. Репозиторий включает как популярные проекты, так и нишевые решения для задач вроде coreference resolution и speaker diarization.
🤖 GitHub
@machinelearning_interview
Особенно полезен раздел с готовыми имплементациями моделей вроде BERT, Tacotron и OpenNMT. Репозиторий включает как популярные проекты, так и нишевые решения для задач вроде coreference resolution и speaker diarization.
🤖 GitHub
@machinelearning_interview
❤7👍4🥰2