Иногда просто нужно узнать, как работает код и как его интегрировать, не тратя часы на изучение самого кода. Repo2vec - это как GitHub Copilot, но с самой актуальной информацией о целевом репозитории.
Возможности:
--index-issues
. И наоборот, вы можете отключить индексирование кода (и индексировать только issues), ключом --no-index-repo
.Помимо self-hosted варианта для приватных репозиториев, repo2vec существует в виде бесплатного онлайн-сервиса индексации публичных репозиториев Github - Code Sage.
# Install the library
pip install repo2vec
# Install Marqo instance using Docker:
docker rm -f marqo
docker pull marqoai/marqo:latest
docker run --name marqo -it -p 8882:8882 marqoai/marqo:latest
# Run index your codebase:
index github-repo-name
--embedder-type=marqo
--vector-store-type=marqo
--index-name=your-index-name
# Сhat with a local LLM via Ollama
# Start Gradio:
chat github-repo-name
--llm-provider=ollama
--llm-model=llama3.1
--vector-store-type=marqo
--index-name=your-index-name
@ai_machinelearning_big_data
#AI #ML #LLM #RAG #repo2vec
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11❤3🔥2
Давайте проверим ваши знания работы бинарного дерева поиска. Посмотрите на изображение и ответьте на вопрос ниже.
#викторина #bst
#викторина #bst
👍6❤2🔥2
Что произойдет при добавлении узла со значением 25 в бинарное дерево поиска (BST) на изображении выше?
Anonymous Quiz
13%
Узел 25 добавится справа от узла 20
4%
Узел 25 добавится слева от узла 20
64%
Узел 25 не будет добавлен, так как уже существует
7%
Узел 25 добавится справа от узла 10
11%
Узел 25 не будет добавлен, так как справа от числа 20 уже есть число 40
👍18🔥5❤4
This media is not supported in your browser
VIEW IN TELEGRAM
🌲 Supertree — инструмент для создания интерактивных визуализаций деревьев решений:
- Работает с Jupyter Notebooks, Jupyter Lab, Google Colab и другими средами, поддерживающими рендеринг HTML.
- Поддерживает возможность масштабирования дерева (зум).
- Позволяет разворачивать и сворачивать выбранные узлы для более удобного анализа.
https://github.com/mljar/supertree
@machinelearning_interview
- Работает с Jupyter Notebooks, Jupyter Lab, Google Colab и другими средами, поддерживающими рендеринг HTML.
- Поддерживает возможность масштабирования дерева (зум).
- Позволяет разворачивать и сворачивать выбранные узлы для более удобного анализа.
https://github.com/mljar/supertree
@machinelearning_interview
👍13🔥9❤3
📚 Справочник-шпаргалка по методологиям и паттернам на Python
Это обширный гайд на «Хабре», который расскажет о:
▪паттернах (порождающих, структурных, поведенческих);
▪разработке через тестирование (TDD);
▪разработке, основанной на описании поведения (BDD);
▪предметно-ориентированном проектировании (DDD).
🔗 Ссылка
@machinelearning_interview
Это обширный гайд на «Хабре», который расскажет о:
▪паттернах (порождающих, структурных, поведенческих);
▪разработке через тестирование (TDD);
▪разработке, основанной на описании поведения (BDD);
▪предметно-ориентированном проектировании (DDD).
🔗 Ссылка
@machinelearning_interview
👍11❤4🔥3❤🔥1👎1
Forwarded from Machinelearning
Книга “Understanding Deep Learning” посвящена идеям и принципам, лежащим в основе глубокого обучения. Подача материала построена таким образом, чтобы читатель мог понять материал настолько эффективно, насколько это возможно. Для читателей, желающих углубиться в изучение, в каждой главе приведены соответствующие задачи, записные книжки по Python и подробные справочные материалы.
В первой части книги представлены модели глубокого обучения и обсуждается, как их обучать, измерять их производительность и улучшать эту производительность.
В следующей части рассматриваются архитектуры, которые специализируются на изображениях, тексте и графических данных. Для свободного понимания этих двух глав требуется понимать принципы линейной алгебры, матанализа и теории вероятностей.
Последующие части книги посвящены генеративным моделям и методике обучения с подкреплением. Эти главы требуют больших знаний в области теории вероятностей и математического анализа.
В последней главе обсуждается этика искусственного интеллекта и призыв к практикующим инженерам задуматься о моральных последствиях своей работы.
Автор книги: Simon J. D. Prince - почетный профессор информатики в Университете Bath (Великобритания) , со-автор более 80 опубликованных исследований в области ML.
Научный сотрудник, специализирующийся на искусственном интеллекте и глубоком обучении, он руководил группами ресерча в Anthropics Technologies Ltd, Borealis AI и других компаниях.
Дополнительно, на отдельном сайте книги, читателям доступны:
@ai_machinelearning_big_data
#AI #ML #Book
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤26🔥10⚡3👎1
🌟 Google представила инструмент для преобразования любой научной статьи в подкаст.
Illuminate – это сервис text-to-audio, который позволяет быстро ознакомиться с содержанием научных статей.
Сейчас инструмент доступен только по запросу – необходимо встать в очередь ожидания. Однако на сайте Illuminate уже есть подкасты по известным научным статьям в области искусственного интеллекта:
🎧 Attention is All You Need
🎧 Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
🎧 On Limitations of the Transformer Architecture
🎧 MLP-Mixer: An all-MLP Architecture for Vision
https://illuminate.google.com/home
@machinelearning_interview
Illuminate – это сервис text-to-audio, который позволяет быстро ознакомиться с содержанием научных статей.
Сейчас инструмент доступен только по запросу – необходимо встать в очередь ожидания. Однако на сайте Illuminate уже есть подкасты по известным научным статьям в области искусственного интеллекта:
🎧 Attention is All You Need
🎧 Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
🎧 On Limitations of the Transformer Architecture
🎧 MLP-Mixer: An all-MLP Architecture for Vision
https://illuminate.google.com/home
@machinelearning_interview
👍11❤6🔥1
🛠 Какова роль у небольших моделей в эпоху LLM: Интересный Обзор
В этой работе рассматриваются взаимоотношения между LLM и малыми моделями, анализируется их потенциал в использовании вместе с большими моделями и иъ конкурентные преимущества.
📝https://arxiv.org/abs/2409.06857
👨🏽💻https://github.com/tigerchen52/role_of_small_models
@machinelearning_interview
В этой работе рассматриваются взаимоотношения между LLM и малыми моделями, анализируется их потенциал в использовании вместе с большими моделями и иъ конкурентные преимущества.
📝https://arxiv.org/abs/2409.06857
👨🏽💻https://github.com/tigerchen52/role_of_small_models
@machinelearning_interview
❤8👍1🔥1
Forwarded from Machinelearning
⚡️ OpenAI релизнули новую модель OpenAI o1, которая в разы мощнее GPT-4o.
Тот самый секретны проект, над которым так долго работала компания.
Доступ обещают дать уже сегодня.
@ai_machinelearning_big_data
#openai #chatgpt
Тот самый секретны проект, над которым так долго работала компания.
Доступ обещают дать уже сегодня.
@ai_machinelearning_big_data
#openai #chatgpt
❤22👍2🔥2
Подборка важных SQL вопросов для разных уровней👇
🔹 Начинающие (0-2 года):
▪️ В чем разница между WHERE и HAVING?
▪️ Какие виды JOIN существуют в SQL?
🔹 Опытные (2-5 лет):
▪️ Запрос для поиска второй по величине зарплаты.
▪️ Оконные функции в SQL, пример с ROW_NUMBER().
🔹 Эксперты (5+ лет):
▪️ Как оптимизировать медленный запрос?
▪️ Когда использовать кластеризованные и некластеризованные индексы?
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18❤6🔥4😁3
В этой статье представлена реализация архитектуры UNet 3+ с помощью TensorFlow.
UNet 3+ расширяет классическую архитектуру UNet и UNet++.
В статье рассмотрен каждый блок архитектуры UNet 3+ и объяснено, как они работают и что способствует повышению производительности модели.
Понимание этих блоков позволит понять механизмы, лежащие в основе UNet 3+, и то, как она эффективно справляется с такими задачами, как сегментация изображений или другими задачами попиксельного предсказания.
https://idiotdeveloper.com/unet-3-plus-implementation-in-tensorflow/
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11❤3🔥2
ИТМО представил анализ Open Source проектов в области машинного обучения и работы с данными в России. Вот ключевые моменты:
— Лидеры: Яндекс, Сбер, Т-банк.
— Решения российских разработчиков ориентируются на локальный и международный рынок.
— Исследователи насчитали 120 открытых решений от Яндекса.
— В топ-3 проектов компании попали CatBoost, YTsaurus, YDB.
— Среди свежих релизов: YaFSDP, Gravity UI, Diplodoc, DataLens.
— В список также попал ex-проект Яндекса — ClickHouse.
Исследование показало смену парадигмы: участники больше не считают, что опенсорс играет на руку конкурентам. Фокус смещается на коллективное развитие сферы через открытые проекты.
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7😁2
Forwarded from Machinelearning
Nemotron-Mini-4B-Instruct - небольшая модель, полученная в результате файнтюна, обрезки (pruning), дистилляции и квантования модели Minitron-4B-Base.
Эта модель оптимизирована для roleplay-сценариев, RAG QA и вызова функций на английском языке.
Практическое применение модели ориентировано на интеграции в гейм-разработке, преимущественно - в экосистеме NVIDIA.
Модель обучалась в период февраль-август 2024 года.
При создании Nemotron-Mini-4B-Instruct использованы техники Grouped-Query Attention (GQA) и Rotary Position Embeddings (RoPE).
Пример инференса в Transformers, шаблоны простого промпта и instruct- шаблон в карточке модели на Huggingface.
Есть неофициальные квантованные (imatrix) GGUF - версии модели в 8 разрядностях, от 3-bit (2.18 Gb) до 16-bit (8.39 Gb) для запуска в llama.cpp и LM Studio.
@ai_machinelearning_big_data
#AI #NVIDIA #LLM #ML #Nemotron
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10👍4🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
🛠 Интересный проект: разработчик создал простую систему, которая помогает пройти собеседование, фактически отвечая за вас!
Алгоритм работает так: Whisper преобразует речь интервьюера в текст, передаёт его ChatGPT, который генерирует ответ. Затем вы просто читаете его с экрана.
Всё, что вам нужно — открывать рот и произносить готовые фразы🤣
▪ GitHub
@machinelearning_interview
Алгоритм работает так: Whisper преобразует речь интервьюера в текст, передаёт его ChatGPT, который генерирует ответ. Затем вы просто читаете его с экрана.
Всё, что вам нужно — открывать рот и произносить готовые фразы🤣
▪ GitHub
@machinelearning_interview
👍31❤3🔥3
Полезный курс сосредоточен на введении в вычисления и визуализацию данных в Python. Подходит для тех, кто не имеет опыта программирования.
Вот темы, которые охватывает курс:
▪️основы Python (в Jupyter);
▪️базовые вычисления и работа с данными (NumPy, Pandas);
▪️работа с API;
▪️визуализация данных (Matplotlib, Seaborn);
▪️лучшие практики Python.
🔗 Ссылка на курс
#курс #python
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18❤2🔥2
⚡️ Задача: Предсказание дохода человека.
Вам известны все необходимые признаки, а данных достаточно.
После построения модели как вы определите, что она получилась хорошей?
Чтобы оценить, построенная модель для предсказания доходов человека получилась хорошей, нужно сделать следующее:
1. Выберите метрику качества модели: Для оценки точности модели используйте одну из следующих метрик: Mean Absolute Error (MAE), Mean Squared Error (MSE) или Root Mean Squared Error (RMSE). Эти метрики помогут понять, насколько точно модель предсказывает целевую переменную.
2. Разделите данные на обучающую и тестовую выборки: Используйте обучающую выборку для построения модели, а тестовую — для оценки её качества. Это поможет избежать переобучения, при котором модель хорошо работает на обучающих данных, но плохо на новых примерах.
3. Оцените модель на тестовых данных: Проверьте качество модели на тестовой выборке. Если значения метрик на обучающей и тестовой выборках не сильно различаются, это указывает на отсутствие переобучения и способность модели давать хорошие предсказания.
4. Примените кросс-валидацию: Дополнительно можно использовать кросс-валидацию для оценки стабильности модели. Это позволит убедиться, что модель демонстрирует хорошие результаты на различных подвыборках данных.
👇 Пишите свой вариант ответа в комментариях.
@machinelearning_interview
Вам известны все необходимые признаки, а данных достаточно.
После построения модели как вы определите, что она получилась хорошей?
Чтобы оценить, построенная модель для предсказания доходов человека получилась хорошей, нужно сделать следующее:
2. Разделите данные на обучающую и тестовую выборки: Используйте обучающую выборку для построения модели, а тестовую — для оценки её качества. Это поможет избежать переобучения, при котором модель хорошо работает на обучающих данных, но плохо на новых примерах.
3. Оцените модель на тестовых данных: Проверьте качество модели на тестовой выборке. Если значения метрик на обучающей и тестовой выборках не сильно различаются, это указывает на отсутствие переобучения и способность модели давать хорошие предсказания.
4. Примените кросс-валидацию: Дополнительно можно использовать кросс-валидацию для оценки стабильности модели. Это позволит убедиться, что модель демонстрирует хорошие результаты на различных подвыборках данных.
👇 Пишите свой вариант ответа в комментариях.
@machinelearning_interview
👍25🤔3🔥2❤1🖕1