@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤2🔥2
Spark, продукт лаборатории GitHub Next, позволяет создавать прототипы приложений с помощью чат-подобного интерфейса. В основе Spark лежат репозиторий GitHub, GitHub Actions и база данных Microsoft Azure CosmosDB.
Spark может использовать любые веб-API, а пользователи могут выбирать между моделями Anthropic’s Claude Sonnet и OpenAI’s GPT. Также заявлена функция шэринга Spark-проектов с настраиваемыми правами доступа.
Открыта запись в waitlist. Подать заявку можно по ссылке.
githubnext.com
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤4🔥2
Медицина, промышленность, образование — это только некоторые из областей, где могут быть полезны исследования в области машинного обучения. Яндекс в шестой раз отметил авторов самых перспективных исследований премией Yandex ML Prize. Рассказываем о самых интересных открытиях.
Иван Бутаков (МФТИ, Сколтех) разработал новый метод, который позволил лучше понять процессы обучения нейросетей. Что это даёт? Теперь можно “регулировать” память искусственного интеллекта и настраивать его “запоминание” или “забывание” информации.
Артем Лыков (Сколтех) и его команда первые в мире представили универсальную когнитивную систему, адаптируемую для различных типов роботов. В числе его разработок — робособака, способная понимать голосовые команды, взаимодействовать с окружающими предметами и воспринимать визуальную информацию. Всё это может стать основной для создания «роя умных роботов».
Елена Тутубалина (КФУ, AIRI) ведет работы в области анализа естественного языка, биомедицинских и химических данных. Ее исследования могут ускорить создание лекарств — от идеи до клинических испытаний.
Помимо самой премии, лауреаты также получат доступ к Яндекс 360 и грант на на использование Yandex Cloud. Эти ресурсы помогут им проводить объёмные вычисления и анализировать данные.
@machinelearning_ru
Иван Бутаков (МФТИ, Сколтех) разработал новый метод, который позволил лучше понять процессы обучения нейросетей. Что это даёт? Теперь можно “регулировать” память искусственного интеллекта и настраивать его “запоминание” или “забывание” информации.
Артем Лыков (Сколтех) и его команда первые в мире представили универсальную когнитивную систему, адаптируемую для различных типов роботов. В числе его разработок — робособака, способная понимать голосовые команды, взаимодействовать с окружающими предметами и воспринимать визуальную информацию. Всё это может стать основной для создания «роя умных роботов».
Елена Тутубалина (КФУ, AIRI) ведет работы в области анализа естественного языка, биомедицинских и химических данных. Ее исследования могут ускорить создание лекарств — от идеи до клинических испытаний.
Помимо самой премии, лауреаты также получат доступ к Яндекс 360 и грант на на использование Yandex Cloud. Эти ресурсы помогут им проводить объёмные вычисления и анализировать данные.
@machinelearning_ru
❤2
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6🔥2
Forwarded from Machinelearning
D-FINE - детектор объектов в режиме реального времени, который предлагает улучшение регрессии bounding box в моделях DETR . D-FINE обладает высокой точностью локализации, определяя регрессию рамок как процесс итеративного уточнения распределений вероятностей.
D-FINE состоит из двух компонентов:
FDR преобразует процесс регрессии из предсказания фиксированных координат в итеративное уточнение распределений вероятностей. Эта техника дает более детальное промежуточное представление, что повышает точность локализации.
GO-LSD - двунаправленная стратегия оптимизации, которая передает знания о локализации из уточненных распределений в более ранние слои модели через самодистилляцию.
Старшие версии D-FINE-L и D-FINE-X достигают 54,0% и 55,8% AP на наборе данных COCO соответственно, работая со скоростью 124 и 78 FPS на GPU NVIDIA T4.
При предварительном обучении на Objects365 D-FINE-L и D-FINE-X показывают 57,1% и 59,3% AP, что выше всех существующих детекторов реального времени.
Разработчики D-FINE предлагают несколько предобученных моделей на датасетах Objects365 и COCO под разные задачи и мощности. Все модели поддерживают инференс на изображениях и видео с использованием ONNX Runtime, TensorRT и PyTorch:
D-FINE предоставляет инструменты для обучения, бенчмаркинга, визуализации с помощью FiftyOne и инструкции по организации наборов данных.
# Create env via conda
conda create -n dfine python=3.11.9
conda activate dfine
# Install requirements for inference
pip install -r tools/inference/requirements.txt
# Install ONNX
pip install onnx onnxsim
# Choose a model
export model=l # s, m, x
# Inference
python tools/inference/onnx_inf.py --onnx model.onnx --input image.jpg # video.mp4
@ai_machinelearning_big_data
#AI #ML #DETR #DFine #Detection
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤2
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤2🔥1👏1
This media is not supported in your browser
VIEW IN TELEGRAM
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤2
Forwarded from Искусственный интеллект. Высокие технологии
@vistehno
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤2🔥2
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6😁2❤1
Forwarded from Machinelearning
Cosmos Tokenizer - набор токенизаторов для изображений и видео с высокой степенью сжатия при сохранении качества реконструкции, представленный на конференции Conference for Robot Learning 2024, которая проходит до 9 ноября в Мюнхене.
Cosmos Tokenizer предлагает непрерывную (C) и дискретную (D) токенизацию для изображений (I) и видео (V), что формирует 4 типа токенизаторов: CI, DI, CV и DV.
Cosmos Tokenizer имеет внушительные показатели сжатия: 8x или 16x для пространственного сжатия изображений и 4x или 8x для временного сжатия видео, при этом работает до 12 раз быстрее, чем другие современные токенизаторы, сохраняя при этом высокое качество изображения.
Такая эффективность обусловлена легкой временно-причинной архитектурой, использующей причинную временную свертку и слои внимания. Этот дизайн архитектуры гарантирует, что обработка каждого кадра зависит только от текущих и прошлых кадров, сохраняя временную согласованность видео.
Для оценки Cosmos Tokenizer использовались стандартные наборы данных и новый набор данных TokenBench, созданный NVIDIA. Cosmos Tokenizer сравнивался с современными токенизаторами с использованием метрик PSNR, SSIM, rFID и rFVD.
Результаты тестирования показали превосходство Cosmos Tokenizer над существующими методами как по качеству реконструкции, так и по скорости работы.
@ai_machinelearning_big_data
#AI #ML #NVIDIA #Tokenizer #Cosmos
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4👍2❤1🥰1
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥5❤3
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍3🔥2
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤1🔥1😁1
Нашел для вас ламповый митап в двух частях от команды AI VK: пройдут 14 и 21 ноября. В эти дни будут обсуждаться свежие статьи с RecSys 2024, 18-й Международной конференции ACM Recommender Systems.
Много интересных докладов и спикеров, активное общение и отличная возможность для нетворкинга!
Темы митапа охватывают самые актуальные направления ML: от семантических эмбеддингов до больших рекомендательных нейронных сетей и классических моделей. Разбор статей проведут специалисты из VK и других ведущих компаний.
Кстати, свои работы также представят участники русскоязычного RecSys-сообщества, чьи статьи были отобраны для этой конференции.
Реальная рекомендация, чтобы расширить свой кругозор и завести новые полезные знакомства! Регистрация уже открыта — присоединяйтесь!
Ссылки для регистрации и программа: 14 ноября здесь и 21 ноября здесь.
@machinelearning_ru
Много интересных докладов и спикеров, активное общение и отличная возможность для нетворкинга!
Темы митапа охватывают самые актуальные направления ML: от семантических эмбеддингов до больших рекомендательных нейронных сетей и классических моделей. Разбор статей проведут специалисты из VK и других ведущих компаний.
Кстати, свои работы также представят участники русскоязычного RecSys-сообщества, чьи статьи были отобраны для этой конференции.
Реальная рекомендация, чтобы расширить свой кругозор и завести новые полезные знакомства! Регистрация уже открыта — присоединяйтесь!
Ссылки для регистрации и программа: 14 ноября здесь и 21 ноября здесь.
@machinelearning_ru
👍4🔥3❤1😁1
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10❤3🔥3
Forwarded from Machinelearning
Epoch AI представила FrontierMath, математический тест, который содержит сотни задач экспертного уровня. Claude 3.5 Sonnet, GPT-4o, o1-preview и Gemini 1.5 Pro показали крайне низкие результаты - менее 2%, а для решения задач теста математикам-специалистам обычно требуются часы или дни.
Набор задач в FrontierMath остается закрытым и неопубликованным, чтобы предотвратить загрязнение данных. Задачи охватывают несколько математических дисциплин, от вычислительной теории чисел до абстрактной алгебраической геометрии.
Epoch AI планирует проводить регулярную оценку моделей ИИ с помощью теста, одновременно расширяя набор задач.
epoch.ai
Ученые из SAND Lab Чикагского университета разработали два инструмента, Glaze и Nightshade, которые защищают цифровое искусство от несанкционированного использования в обучении моделей.
Glaze изменяет изображения таким образом, чтобы алгоритмы ИИ не могли распознать стиль художника, а Nightshade добавляет в изображения «яд», нарушающий работу моделей ИИ. Оба инструмента были загружены миллионы раз и используются художниками для защиты своих работ от копирования и использования без их согласия.
Nightshade может нанести серьезный ущерб моделям ИИ, заставив их интерпретировать изображения неправильно, например, принимать собак за кошек. Разработчики инструментов надеются, что они заставят компании, занимающиеся ИИ, вести переговоры с художниками о лицензировании и справедливой компенсации.
technologyreview.com
OpenAI разработала план развития инфраструктуры ИИ в США, который включает создание специальных экономических зон для ИИ, использование опыта ВМС США в области ядерной энергетики и финансирование государственных проектов частными инвесторами. План также предусматривает создание североамериканского альянса по ИИ для конкуренции с китайскими инициативами.
Компания считает, что инвестиции в ИИ в США приведут к созданию десятков тысяч рабочих мест, росту ВВП, модернизации энергосистемы, появлению новых заводов по производству чипов и привлечению миллиардов долларов инвестиций из глобальных фондов.
В плане также прогнозируется принятие закона о национальной транспортной магистрали, который позволит расширить строительство линий электропередач, волоконно-оптических сетей и газопроводов.
cnbc.com
YouTube тестирует новую функцию в наборе инструментов Dream Track, которая позволяет авторам ремиксовать треки с помощью опции «Restyle a track» и описать текстом, как они хотят изменить стиль песни. Restyle a track сгенерирует 30-секундный фрагмент, который авторы смогут использовать в Shorts.
Ремикшированные фрагменты будут содержать информацию об оригинальной песне на странице Shorts audio pivot. Ремиксы также будут иметь соответствующую метку, указывающую на то, что трек был изменен с помощью ИИ.
techcrunch.com
Исследователи из Университета Пенсильвании разработали систему PanoRadar, которая использует радиоволны и ИИ, чтобы обеспечить роботов трехмерным зрением, подобным LiDAR, но по более низкой цене.
PanoRadar работает как маяк, вращаясь и излучая радиоволны, отражения которых обрабатываются ИИ для создания точного 3D-изображения окружающей среды. Эта технология позволяет роботам видеть сквозь препятствия, дым и туман. PanoRadar использует алгоритмы машинного обучения для интерпретации сложных сигналов радиоволн и достижения высокого разрешения, сравнимого с LiDAR.
interestingengineering.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4👍3🥰2
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥3