Forwarded from Machinelearning
🥥 Training Large Language Models to Reason in a Continuous Latent Space
Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).
Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.
Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем
При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.
В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами
Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.
На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.
Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.
Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.
Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов
▪Github
▪Paper
@ai_machinelearning_big_data
#deeplearning #nlp #reasoning #llm #ml
Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).
Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.
Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем
При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.
В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами
<bot> и <eot>.
Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.
На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.
Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.
Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.
Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов
git clone [email protected]:facebookresearch/coconut.git
cd coconut
▪Github
▪Paper
@ai_machinelearning_big_data
#deeplearning #nlp #reasoning #llm #ml
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
https://jalammar.github.io/illustrated-transformer/
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
МАШИННОЕ ОБУЧЕНИЕ: www.tgoop.com/ai_machinelearning_big_data
C++ www.tgoop.com/cpluspluc
Python: www.tgoop.com/pythonl
Linux: www.tgoop.com/linuxacademiya
Хакинг: www.tgoop.com/linuxkalii
Devops: www.tgoop.com/DevOPSitsec
Data Science: www.tgoop.com/data_analysis_ml
Javascript: www.tgoop.com/javascriptv
C#: www.tgoop.com/csharp_ci
Java: www.tgoop.com/javatg
Базы данных: www.tgoop.com/sqlhub
Python собеседования: www.tgoop.com/python_job_interview
Мобильная разработка: www.tgoop.com/mobdevelop
Docker: www.tgoop.com/DevopsDocker
Golang: www.tgoop.com/Golang_google
React: www.tgoop.com/react_tg
Rust: www.tgoop.com/rust_code
ИИ: www.tgoop.com/vistehno
PHP: www.tgoop.com/phpshka
Android: www.tgoop.com/android_its
Frontend: www.tgoop.com/front
Big Data: www.tgoop.com/bigdatai
Собеседования МЛ: www.tgoop.com/machinelearning_interview
МАТЕМАТИКА: www.tgoop.com/data_math
Kubernets: www.tgoop.com/kubernetc
Разработка игр: https://www.tgoop.com/gamedev
Haskell: www.tgoop.com/haskell_tg
Физика: www.tgoop.com/fizmat
💼 Папка с вакансиями: www.tgoop.com/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: www.tgoop.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.tgoop.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.tgoop.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.tgoop.com/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: www.tgoop.com/memes_prog
🇬🇧Английский: www.tgoop.com/english_forprogrammers
🧠ИИ: www.tgoop.com/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://www.tgoop.com/addlist/BkskQciUW_FhNjEy
МАШИННОЕ ОБУЧЕНИЕ: www.tgoop.com/ai_machinelearning_big_data
C++ www.tgoop.com/cpluspluc
Python: www.tgoop.com/pythonl
Linux: www.tgoop.com/linuxacademiya
Хакинг: www.tgoop.com/linuxkalii
Devops: www.tgoop.com/DevOPSitsec
Data Science: www.tgoop.com/data_analysis_ml
Javascript: www.tgoop.com/javascriptv
C#: www.tgoop.com/csharp_ci
Java: www.tgoop.com/javatg
Базы данных: www.tgoop.com/sqlhub
Python собеседования: www.tgoop.com/python_job_interview
Мобильная разработка: www.tgoop.com/mobdevelop
Docker: www.tgoop.com/DevopsDocker
Golang: www.tgoop.com/Golang_google
React: www.tgoop.com/react_tg
Rust: www.tgoop.com/rust_code
ИИ: www.tgoop.com/vistehno
PHP: www.tgoop.com/phpshka
Android: www.tgoop.com/android_its
Frontend: www.tgoop.com/front
Big Data: www.tgoop.com/bigdatai
Собеседования МЛ: www.tgoop.com/machinelearning_interview
МАТЕМАТИКА: www.tgoop.com/data_math
Kubernets: www.tgoop.com/kubernetc
Разработка игр: https://www.tgoop.com/gamedev
Haskell: www.tgoop.com/haskell_tg
Физика: www.tgoop.com/fizmat
💼 Папка с вакансиями: www.tgoop.com/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: www.tgoop.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.tgoop.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.tgoop.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.tgoop.com/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: www.tgoop.com/memes_prog
🇬🇧Английский: www.tgoop.com/english_forprogrammers
🧠ИИ: www.tgoop.com/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://www.tgoop.com/addlist/BkskQciUW_FhNjEy
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
🚨Только что были выпущены веса для новой ризонинг моделей DeepSeek-R Zero.
Модель 685B основана на 3V.
Размер: 720GB 🤯
Ждем официального анонса, который с высокой степенью вероятности состоится сегодня или завтра.
https://huggingface.co/deepseek-ai/DeepSeek-R1
Модель 685B основана на 3V.
Размер: 720GB 🤯
Ждем официального анонса, который с высокой степенью вероятности состоится сегодня или завтра.
https://huggingface.co/deepseek-ai/DeepSeek-R1
huggingface.co
deepseek-ai/DeepSeek-R1 · Hugging Face
We’re on a journey to advance and democratize artificial intelligence through open source and open science.
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🌟 Google только что выпустили новую модель Gemini 2.0 Flash Thinking
✅ Контекст с 1 миллионом токенов (5-х больше, чем o1 Pro)
#1 на арене чат-ботов👑
Модель показала наивысший результат, обогнав Gemini-Exp-1206
+ 17 очков прироста по сравнению с предыдущей контрольной точкой 1219
- №1 по всем направлениям (генерации кода), за исключением управления стилем.
• AIME: 73.3%
• GPQA: 74.2%
• MMMU: 75.4%
Модель доступна в ai-gradio
pip install --upgrade "ai-gradio[gemini]"
Они так же выпустили Gemini2.0 Pro.
https://aistudio.google.com/prompts/new_chat?model=gemini-2.0-flash-thinking-exp-01-21
#google #gemini
✅ Контекст с 1 миллионом токенов (5-х больше, чем o1 Pro)
#1 на арене чат-ботов
Модель показала наивысший результат, обогнав Gemini-Exp-1206
+ 17 очков прироста по сравнению с предыдущей контрольной точкой 1219
- №1 по всем направлениям (генерации кода), за исключением управления стилем.
• AIME: 73.3%
• GPQA: 74.2%
• MMMU: 75.4%
Модель доступна в ai-gradio
pip install --upgrade "ai-gradio[gemini]"
Они так же выпустили Gemini2.0 Pro.
https://aistudio.google.com/prompts/new_chat?model=gemini-2.0-flash-thinking-exp-01-21
#google #gemini
Please open Telegram to view this post
VIEW IN TELEGRAM
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
Эта впечатляющая возможность была недавно продемонстрирована, и она способна взять на себя множество рутинных задач, таких как обработка электронной почты, заказ еды и работа с таблицами в Excel.
Тестировщики начнут получать доступ к этой функции уже сегодня.
https://openai.com/index/introducing-operator/
Please open Telegram to view this post
VIEW IN TELEGRAM
https://www.youtube.com/watch?v=btvB56PkvwE
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
YouTube
This New Free AI Is History In The Making!
❤️ Check out Lambda here and sign up for their GPU Cloud: https://lambdalabs.com/papers
Try it out (choose DeepSeek as your model): https://huggingface.co/chat/
Official (read the privacy policy below before you use this one): https://www.deepseek.com/
…
Try it out (choose DeepSeek as your model): https://huggingface.co/chat/
Official (read the privacy policy below before you use this one): https://www.deepseek.com/
…
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
Работа в Data Science занимает первое место в рейтинге профессий с самым большим спросом на рынке до 2025 года по данным Всемирного экономического форума.Бизнесу нужны спецы, которые умеют создавать модели машинного обучения и нейросети.
Если вы хотите войти в эту профессию с нуля, не обязательно сразу покупать дорогие программы обучения — познакомиться с профессией и понять, подходит она вам или нет можно на бесплатном онлайн-вебинаре от karpov courses, который пройдёт 28 января в 19:00 по мск.
На бесплатном практическом вебинаре узнайте, кто такие ML-инженеры, какие навыки и инструменты необходимы для старта в профессии, а также с какими повседневными задачами сталкивается ML-инженер.
Переходите по ссылке, регистрируйтесь на вебинар и получите карьерный гайд в подарок: https://clc.to/erid_2W5zFJBpRJp
Реклама. ООО "КАРПОВ КУРСЫ". ИНН 7811764627.
Если вы хотите войти в эту профессию с нуля, не обязательно сразу покупать дорогие программы обучения — познакомиться с профессией и понять, подходит она вам или нет можно на бесплатном онлайн-вебинаре от karpov courses, который пройдёт 28 января в 19:00 по мск.
На бесплатном практическом вебинаре узнайте, кто такие ML-инженеры, какие навыки и инструменты необходимы для старта в профессии, а также с какими повседневными задачами сталкивается ML-инженер.
Переходите по ссылке, регистрируйтесь на вебинар и получите карьерный гайд в подарок: https://clc.to/erid_2W5zFJBpRJp
Реклама. ООО "КАРПОВ КУРСЫ". ИНН 7811764627.
🔥 Minima — это open source решение для RAG в контейнерах для развертывания на любых мощностях (клауд или локал), с возможностью интеграции с ChatGPT и MCP.
Minima также может использоваться как RAG на вашей машине.
Minima поддерживает три режима работы:
1. Изолированная установка — Работа в контейнерах без внешних зависимостей, таких как ChatGPT или Claude. Все нейронные сети (LLM, ранкер, эмбеддинг) и векторный сторедж запускаются на вашем сервере или ПК, обеспечивая безопасность ваших данных.
2. Кастомный GPT — Запросы к вашим локальным документам через приложение или веб-версию ChatGPT с использованием кастомных GPT. Индексатор работает на вашем сервере или локальном ПК, а основная LLM остаётся ChatGPT.
3. Anthropic Claude — Использование приложения Anthropic Claude для запросов к вашим локальным документам. Индексатор работает на вашем локальном ПК, а основная LLM — это Anthropic Claude.
В данный момент, Minima решает задачу RAG on-premises и призывает всех поставить звезду и форкнуть репозиторий, а так же не стесняться и принять участие в разработке.
📌 Лицензия MPL-2.0
▪ Github
@machinelearning_ru
Minima также может использоваться как RAG на вашей машине.
Minima поддерживает три режима работы:
1. Изолированная установка — Работа в контейнерах без внешних зависимостей, таких как ChatGPT или Claude. Все нейронные сети (LLM, ранкер, эмбеддинг) и векторный сторедж запускаются на вашем сервере или ПК, обеспечивая безопасность ваших данных.
2. Кастомный GPT — Запросы к вашим локальным документам через приложение или веб-версию ChatGPT с использованием кастомных GPT. Индексатор работает на вашем сервере или локальном ПК, а основная LLM остаётся ChatGPT.
3. Anthropic Claude — Использование приложения Anthropic Claude для запросов к вашим локальным документам. Индексатор работает на вашем локальном ПК, а основная LLM — это Anthropic Claude.
В данный момент, Minima решает задачу RAG on-premises и призывает всех поставить звезду и форкнуть репозиторий, а так же не стесняться и принять участие в разработке.
📌 Лицензия MPL-2.0
▪ Github
@machinelearning_ru