Please open Telegram to view this post
VIEW IN TELEGRAM
😁16❤3👍2🔥2
В опенсорс вышла LFM2-350M, дообученная для реального двунаправленного перевода японский ⇄ английский в режиме реального времени (короткий и средний контекст).
✨ Результаты:
Маленькие специализированные модели начинают уверенно конкурировать с гигантами.
Download the bundle in LEAP:
https://leap.liquid.ai/models?model=lfm2-350m-enjp-mt
LFM2-350M-ENJP-MT: https://huggingface.co/LiquidAI/LFM2-350M-ENJP-MT
https://huggingface.co/LiquidAI/LFM2-350M-ENJP-MT-GGUF
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10👍9🥰2
🔥Прими участие в Хакатоне Т1 в Нижнем Новгороде и поборись за призовой фонд 600 000 рублей!
📅 Когда: 19 – 22 сентября
🌐 Формат: онлайн + финал на площадке
Участвуй, если ты:
🔹студент тех/ИТ-направлений;
🔹развиваешься в dev, аналитике, дизайне, AI/DS/ML, DevOps;
🔹сможешь быть в Нижнем Новгороде 22-09.
Выбери свой кейс:
🔸PingTower — сервис круглосуточного отслеживания доступности сайтов и мгновенных уведомлений о сбоях, позволяющий бизнесу не терять клиентов.
🔸HR Консультант — ИИ-консультант для карьерных сценариев и поиска талантов по умным фильтрам.
Почему стоит участвовать:
🔻Кейс в портфолио и полезная обратная связь от менторов Т1;
🔻Шанс проявить себя, чтобы начать карьеру в одной из крупнейших ИТ-компаний;
🔻Реальный опыт командной работы.
Регистрация открыта!
➡️ Успей до 17 сентября по ссылке.
Ты не из Нижнего Новгорода? Смотри расписание хакатонов в других городах.
#реклама
О рекламодателе
📅 Когда: 19 – 22 сентября
🌐 Формат: онлайн + финал на площадке
Участвуй, если ты:
🔹студент тех/ИТ-направлений;
🔹развиваешься в dev, аналитике, дизайне, AI/DS/ML, DevOps;
🔹сможешь быть в Нижнем Новгороде 22-09.
Выбери свой кейс:
🔸PingTower — сервис круглосуточного отслеживания доступности сайтов и мгновенных уведомлений о сбоях, позволяющий бизнесу не терять клиентов.
🔸HR Консультант — ИИ-консультант для карьерных сценариев и поиска талантов по умным фильтрам.
Почему стоит участвовать:
🔻Кейс в портфолио и полезная обратная связь от менторов Т1;
🔻Шанс проявить себя, чтобы начать карьеру в одной из крупнейших ИТ-компаний;
🔻Реальный опыт командной работы.
Регистрация открыта!
➡️ Успей до 17 сентября по ссылке.
Ты не из Нижнего Новгорода? Смотри расписание хакатонов в других городах.
#реклама
О рекламодателе
🧠 Open Data Synthesis for Deep Research (InfoSeek): как «синтезировать» сложные ресёрч-задачи для LLM
Что за идея
Авторы предлагают формализовать deep-research как иерархические задачи с проверяемым ответом, а затем генерировать такие задачи автоматически — чтобы учить и тестировать модели на реальных сценариях «поиска + рассуждений». Это снимает боль с дефицитом хороших датасетов под агенты «как Perplexity/OpenAI DR».
Как это работает (по-простому)
1) Из веба строится «дерево исследования»: главный вопрос → подзадачи → факты/источники.
2) Узлы дерева превращаются в естественно-языковые подпро́сы, сохраняются метки: какие документы/шаги нужны.
3) Из дерева собирают финальные вопросы и треки рассуждений, пригодные для обучения/оценки.
4) На выходе — большой набор примеров + аккуратный тестовый сплит, чтобы не ловить утечки знаний.
Почему это важно
- Учим модели искать, планировать и проверять источники, а не просто вспоминать факты.
- Получаем мета-информацию (шаги, ретривальные метки) — полезно для сложных режимов обучения и анализа качества цитирования.
- Данные масштабируются: можно быстро наращивать объём и сложность задач.
Результаты (сигналы)
- Маленькие LLM ~3B, обученные на InfoSeek, обгоняют крупные 32B-модели и лёгкие коммерческие API на свежем бенчмарке BrowseComp-Plus; местами выходят на уровень сильных API.
- Это прямой намёк: лучшие задачи > просто большие параметры. Для DR-агентов решает качество/структура данных.
Как применять у себя
- Если делаете «исследовательского» агента:
• учите/дообучайте на иерархически синтезированных примерах;
• оценивайте на фиксированном корпусе (в духе BrowseComp-Plus), чтобы честно сравнивать ретривер и LLM;
• храните шаги рассуждений и ссылки — это даёт прозрачность и почву для улучшений (награды, дедуп, верификация).
TL;DR
InfoSeek показывает, как синтезировать качественные deep-research задачи с шагами и источниками. На таких данных даже компактные модели учатся искать, планировать и проверять факты — и выигрывают у более крупных собеседников.
https://huggingface.co/datasets/Lk123/InfoSeek
Что за идея
Авторы предлагают формализовать deep-research как иерархические задачи с проверяемым ответом, а затем генерировать такие задачи автоматически — чтобы учить и тестировать модели на реальных сценариях «поиска + рассуждений». Это снимает боль с дефицитом хороших датасетов под агенты «как Perplexity/OpenAI DR».
Как это работает (по-простому)
1) Из веба строится «дерево исследования»: главный вопрос → подзадачи → факты/источники.
2) Узлы дерева превращаются в естественно-языковые подпро́сы, сохраняются метки: какие документы/шаги нужны.
3) Из дерева собирают финальные вопросы и треки рассуждений, пригодные для обучения/оценки.
4) На выходе — большой набор примеров + аккуратный тестовый сплит, чтобы не ловить утечки знаний.
Почему это важно
- Учим модели искать, планировать и проверять источники, а не просто вспоминать факты.
- Получаем мета-информацию (шаги, ретривальные метки) — полезно для сложных режимов обучения и анализа качества цитирования.
- Данные масштабируются: можно быстро наращивать объём и сложность задач.
Результаты (сигналы)
- Маленькие LLM ~3B, обученные на InfoSeek, обгоняют крупные 32B-модели и лёгкие коммерческие API на свежем бенчмарке BrowseComp-Plus; местами выходят на уровень сильных API.
- Это прямой намёк: лучшие задачи > просто большие параметры. Для DR-агентов решает качество/структура данных.
Как применять у себя
- Если делаете «исследовательского» агента:
• учите/дообучайте на иерархически синтезированных примерах;
• оценивайте на фиксированном корпусе (в духе BrowseComp-Plus), чтобы честно сравнивать ретривер и LLM;
• храните шаги рассуждений и ссылки — это даёт прозрачность и почву для улучшений (награды, дедуп, верификация).
TL;DR
InfoSeek показывает, как синтезировать качественные deep-research задачи с шагами и источниками. На таких данных даже компактные модели учатся искать, планировать и проверять факты — и выигрывают у более крупных собеседников.
https://huggingface.co/datasets/Lk123/InfoSeek
huggingface.co
Lk123/InfoSeek · Datasets at Hugging Face
We’re on a journey to advance and democratize artificial intelligence through open source and open science.
❤3🔥3
🔥 Успех в IT = скорость + знания + окружение
Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!
AI: www.tgoop.com/ai_machinelearning_big_data
Python: www.tgoop.com/pythonl
Linux: www.tgoop.com/linuxacademiya
Собеседования DS: www.tgoop.com/machinelearning_interview
C++ www.tgoop.com/cpluspluc
Docker: www.tgoop.com/DevopsDocker
Хакинг: www.tgoop.com/linuxkalii
Devops: www.tgoop.com/DevOPSitsec
Data Science: www.tgoop.com/data_analysis_ml
Javascript: www.tgoop.com/javascriptv
C#: www.tgoop.com/csharp_1001_notes
Java: www.tgoop.com/java_library
Базы данных: www.tgoop.com/sqlhub
Python собеседования: www.tgoop.com/python_job_interview
Мобильная разработка: www.tgoop.com/mobdevelop
Golang: www.tgoop.com/Golang_google
React: www.tgoop.com/react_tg
Rust: www.tgoop.com/rust_code
ИИ: www.tgoop.com/vistehno
PHP: www.tgoop.com/phpshka
Android: www.tgoop.com/android_its
Frontend: www.tgoop.com/front
Big Data: www.tgoop.com/bigdatai
МАТЕМАТИКА: www.tgoop.com/data_math
Kubernets: www.tgoop.com/kubernetc
Разработка игр: https://www.tgoop.com/gamedev
Haskell: www.tgoop.com/haskell_tg
Физика: www.tgoop.com/fizmat
💼 Папка с вакансиями: www.tgoop.com/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: www.tgoop.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.tgoop.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.tgoop.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.tgoop.com/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: www.tgoop.com/memes_prog
🇬🇧Английский: www.tgoop.com/english_forprogrammers
🧠ИИ: www.tgoop.com/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://www.tgoop.com/addlist/BkskQciUW_FhNjEy
Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!
AI: www.tgoop.com/ai_machinelearning_big_data
Python: www.tgoop.com/pythonl
Linux: www.tgoop.com/linuxacademiya
Собеседования DS: www.tgoop.com/machinelearning_interview
C++ www.tgoop.com/cpluspluc
Docker: www.tgoop.com/DevopsDocker
Хакинг: www.tgoop.com/linuxkalii
Devops: www.tgoop.com/DevOPSitsec
Data Science: www.tgoop.com/data_analysis_ml
Javascript: www.tgoop.com/javascriptv
C#: www.tgoop.com/csharp_1001_notes
Java: www.tgoop.com/java_library
Базы данных: www.tgoop.com/sqlhub
Python собеседования: www.tgoop.com/python_job_interview
Мобильная разработка: www.tgoop.com/mobdevelop
Golang: www.tgoop.com/Golang_google
React: www.tgoop.com/react_tg
Rust: www.tgoop.com/rust_code
ИИ: www.tgoop.com/vistehno
PHP: www.tgoop.com/phpshka
Android: www.tgoop.com/android_its
Frontend: www.tgoop.com/front
Big Data: www.tgoop.com/bigdatai
МАТЕМАТИКА: www.tgoop.com/data_math
Kubernets: www.tgoop.com/kubernetc
Разработка игр: https://www.tgoop.com/gamedev
Haskell: www.tgoop.com/haskell_tg
Физика: www.tgoop.com/fizmat
💼 Папка с вакансиями: www.tgoop.com/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: www.tgoop.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.tgoop.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.tgoop.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.tgoop.com/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: www.tgoop.com/memes_prog
🇬🇧Английский: www.tgoop.com/english_forprogrammers
🧠ИИ: www.tgoop.com/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://www.tgoop.com/addlist/BkskQciUW_FhNjEy
Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
👍2
Новая версия м индексом 0905 получила двукратное увеличение контекстного окна со 128K до 256K токенов, улучшение агентных возможностей для написания кода, повышение качества генерации фронтенд-кода и увеличение скорости работы API до 60-100 токенов в секунду.
Kimi K2 — это открытая модель с архитектурой MoE на 1 триллион общих и 32 миллиарда активных параметров. Версия 0905 уже доступна в официальных приложениях Kimi, а также для самостоятельного развертывания через репозитории
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤4🔥3
💸 OpenAI тратит намного больше, чем ожидалось
По данным The Information, компания подняла прогноз своих расходов до $115 млрд к 2029 году — это на $80 млрд выше прошлых оценок.
⚡ В этом году OpenAI «сожжёт» свыше $8 млрд, что на $1.5 млрд больше, чем планировалось ранее. Основная причина — огромные счета за аренду облачных серверов, где OpenAI уже стал одним из крупнейших клиентов в мире.
📌 Чтобы уменьшить затраты, компания собирается строить собственные дата-центры и разрабатывать чипы.
#OpenAI #AI #Cloud #Finance
По данным The Information, компания подняла прогноз своих расходов до $115 млрд к 2029 году — это на $80 млрд выше прошлых оценок.
⚡ В этом году OpenAI «сожжёт» свыше $8 млрд, что на $1.5 млрд больше, чем планировалось ранее. Основная причина — огромные счета за аренду облачных серверов, где OpenAI уже стал одним из крупнейших клиентов в мире.
📌 Чтобы уменьшить затраты, компания собирается строить собственные дата-центры и разрабатывать чипы.
#OpenAI #AI #Cloud #Finance
🔥7👍5🥰3❤1
🛠️ Оптимизированные компиляторы с LLVM
LLVM — это мощный инструмент для создания высокоэффективных компиляторов и сред выполнения. Он включает в себя множество компонентов, таких как Clang для компиляции C и C++, а также библиотеки и утилиты для работы с промежуточными представлениями.
🚀 Основные моменты:
- Поддержка множества языков программирования.
- Включает стандартную библиотеку libc++.
- Инструменты для анализа и оптимизации биткода.
- Активное сообщество и поддержка.
📌 GitHub: https://github.com/llvm/llvm-project
#cpp
LLVM — это мощный инструмент для создания высокоэффективных компиляторов и сред выполнения. Он включает в себя множество компонентов, таких как Clang для компиляции C и C++, а также библиотеки и утилиты для работы с промежуточными представлениями.
🚀 Основные моменты:
- Поддержка множества языков программирования.
- Включает стандартную библиотеку libc++.
- Инструменты для анализа и оптимизации биткода.
- Активное сообщество и поддержка.
📌 GitHub: https://github.com/llvm/llvm-project
#cpp
❤4👍3🔥3
🤖🔌 DeepMCPAgent
Новый инструмент для динамического поиска MCP-тулов и разработки агентов.
✨ Построен на LangChain и LangGraph
⚡️ Поддерживает интеграцию через HTTP/SSE
🧠 Совместим с основными LLM
Упрощает создание и подключение интеллектуальных агентов.
🚀 Попробовать: github.com/cryxnet/deepmcpagent
Новый инструмент для динамического поиска MCP-тулов и разработки агентов.
✨ Построен на LangChain и LangGraph
⚡️ Поддерживает интеграцию через HTTP/SSE
🧠 Совместим с основными LLM
Упрощает создание и подключение интеллектуальных агентов.
🚀 Попробовать: github.com/cryxnet/deepmcpagent
👍4🔥2
Forwarded from Machinelearning
OpenAI поддерживает проект Critterz — первый полнометражный анимационный фильм, созданный преимущественно с применением генеративного ИИ.
- вместо привычных 3 лет производство займёт всего 9 месяцев
- бюджет — менее $30 млн (значительно меньше, чем обычно стоит производство подобных анимационных фильмов)
- премьера намечена на Каннский кинофестиваль в мае 2026 года, после чего планируется мировой прокат
Команда собирается привлечь живых актёров для озвучивания персонажей и нанять художников, которые подготовят эскизы. Эти материалы будут загружаться в инструменты OpenAI — включая GPT-5 и модели генерации изображений.
@ai_machinelearning_big_data
#ai #openai #genai
@ai_machinelearning_big_data
#ai #openai #genai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4👎3🔥2🥰2
На конференции South Hub эксперты заявили о начале третьей революции в области знаний — после появления письменности и интернета. По мнению специалистов из технологической платформы Авито, развитие больших языковых моделей с открытым исходным кодом запустило процесс, сравнимый с «золотой лихорадкой».
«Мы смотрим на всю эпопею с генеративным ИИ, как на золотую лихорадку, и все пытаются найти золото, но не у всех получается. Появление open source моделей все изменило – теперь каждый энтузиаст, исследователь в университете, стартап может попробовать поэкспериментировать с большими языковыми моделями», — отметил управляющий директор по ИИ «Авито» Андрей Рыбинцев.
Одно из ключевых изменений — переход от традиционных интерфейсов к естественному диалогу с системами. Вместо сложных меню и цепочек действий пользователи получают решения через простой запрос. Это может привести к замене тысяч специализированных приложений единым ИИ-агентом.
Разработчики теперь становятся «дирижерами» ИИ-помощников, как выразился руководитель разработки AI Lab «Авито» Олег Королев. Прототипы, требовавшие ранее командной работы, создаются одним специалистом за выходные.
Технический директор «Авито» Андрей Венжега предупредил, что текущие представления о возможностях ИИ могут оказаться наивными уже через два года из-за стремительного темпа изменений. Технологический скептицизм уступил место всеобщему признанию революционного характера преобразований.
Больше интересных выводов о будущем ИИ можно узнать в подкасте: Youtube | VK-видео | Rutube | Аудиоверсия
Подпишитесь на полезные каналы Авито
«Мы смотрим на всю эпопею с генеративным ИИ, как на золотую лихорадку, и все пытаются найти золото, но не у всех получается. Появление open source моделей все изменило – теперь каждый энтузиаст, исследователь в университете, стартап может попробовать поэкспериментировать с большими языковыми моделями», — отметил управляющий директор по ИИ «Авито» Андрей Рыбинцев.
Одно из ключевых изменений — переход от традиционных интерфейсов к естественному диалогу с системами. Вместо сложных меню и цепочек действий пользователи получают решения через простой запрос. Это может привести к замене тысяч специализированных приложений единым ИИ-агентом.
Разработчики теперь становятся «дирижерами» ИИ-помощников, как выразился руководитель разработки AI Lab «Авито» Олег Королев. Прототипы, требовавшие ранее командной работы, создаются одним специалистом за выходные.
Технический директор «Авито» Андрей Венжега предупредил, что текущие представления о возможностях ИИ могут оказаться наивными уже через два года из-за стремительного темпа изменений. Технологический скептицизм уступил место всеобщему признанию революционного характера преобразований.
Больше интересных выводов о будущем ИИ можно узнать в подкасте: Youtube | VK-видео | Rutube | Аудиоверсия
Подпишитесь на полезные каналы Авито
👍2🔥2❤1👎1
🗺️ AI-генератор бесконечных карт
Nano Banana Infinimap — экспериментальный генератор карт, использующий ИИ для создания бесшовных тайлов. Проект демонстрирует возможности модели Nano Banana, позволяя генерировать огромные карты с учетом соседних тайлов.
🚀Основные моменты:
- 🗺️ Бесконечные карты с навигацией на базе Leaflet
- 🤖 Генерация тайлов с использованием модели Google Nano Banana
- 🔗 Учет соседних тайлов для плавных краев
- 💾 Локальное хранение данных
📌 GitHub: https://github.com/seezatnap/nano-banana-infinimap
#javascript
Nano Banana Infinimap — экспериментальный генератор карт, использующий ИИ для создания бесшовных тайлов. Проект демонстрирует возможности модели Nano Banana, позволяя генерировать огромные карты с учетом соседних тайлов.
🚀Основные моменты:
- 🗺️ Бесконечные карты с навигацией на базе Leaflet
- 🤖 Генерация тайлов с использованием модели Google Nano Banana
- 🔗 Учет соседних тайлов для плавных краев
- 💾 Локальное хранение данных
📌 GitHub: https://github.com/seezatnap/nano-banana-infinimap
#javascript
GitHub
GitHub - seezatnap/nano-banana-infinimap
Contribute to seezatnap/nano-banana-infinimap development by creating an account on GitHub.
❤4👍2🔥2
🔒 MIT Sloan: 80% современных атак с выкупом работают на ИИ
ИИ стал главным оружием киберпреступников:
- LLM штампуют фишинговые письма и вредоносный код
- Голосовое клонирование подделывает звонки «от босса» или службы поддержки
- Автоматизация ломает пароли и обходит CAPTCHA в разы быстрее
🚨 Что это значит для бизнеса:
- Простых обновлений и ручного мониторинга уже недостаточно
- Системы должны сами лечить уязвимости и держать оборону 24/7
- «Zero trust» — новый стандарт: доверять нельзя никому, даже внутренним запросам
🛡 Три уровня защиты будущего:
1. Automation — авто-патчи и самовосстановление кода
2. Autonomous & deceptive defense — движущаяся цель + фейковые ловушки для хакеров
3. Augmented oversight — онлайн risk-score, прогноз ущерба и отчётность для руководителей
ИИ ускорил атаки — но он же помогает строить умную, автономную защиту.
🔗 MIT Sloan Report: https://mitsloan.mit.edu/ideas-made-to-matter/80-ransomware-attacks-now-use-artificial-intelligence
#AI #Cybersecurity #Ransomware #ZeroTrust #MIT
ИИ стал главным оружием киберпреступников:
- LLM штампуют фишинговые письма и вредоносный код
- Голосовое клонирование подделывает звонки «от босса» или службы поддержки
- Автоматизация ломает пароли и обходит CAPTCHA в разы быстрее
🚨 Что это значит для бизнеса:
- Простых обновлений и ручного мониторинга уже недостаточно
- Системы должны сами лечить уязвимости и держать оборону 24/7
- «Zero trust» — новый стандарт: доверять нельзя никому, даже внутренним запросам
🛡 Три уровня защиты будущего:
1. Automation — авто-патчи и самовосстановление кода
2. Autonomous & deceptive defense — движущаяся цель + фейковые ловушки для хакеров
3. Augmented oversight — онлайн risk-score, прогноз ущерба и отчётность для руководителей
ИИ ускорил атаки — но он же помогает строить умную, автономную защиту.
🔗 MIT Sloan Report: https://mitsloan.mit.edu/ideas-made-to-matter/80-ransomware-attacks-now-use-artificial-intelligence
#AI #Cybersecurity #Ransomware #ZeroTrust #MIT
❤3👍1😁1
🤖 AI vs рекрутеры: кто лучше проводит собеседования?
Исследование Университета Чикаго и Erasmus University показало, что AI-интервьюеры могут иметь серьёзные преимущества перед людьми.
📊 Результаты на 67 000 соискателей (call-center, Филиппины):
• Кандидаты, прошедшие интервью у чат-бота Anna AI, на 12% чаще получали оффер.
• Среди получивших оффер — на 18% чаще выходили на работу.
• Соискатели вдвое реже жаловались на дискриминацию по полу.
• Anna AI охватывала в среднем 9 тем против 5 у рекрутеров.
• 71% кандидатов оценили опыт интервью с ботом позитивно.
⚠️ Минусы: 5% интервью заканчивались раньше времени, 7% имели техсбои.
💡 Почему это важно:
AI-интервью могут быть более объективными, масштабируемыми и удобными для кандидатов, чем живое интервью с рекрутером. Особенно это заметно в массовом найме для entry-level позиций.
📌 Полный разбор исследования
Исследование Университета Чикаго и Erasmus University показало, что AI-интервьюеры могут иметь серьёзные преимущества перед людьми.
📊 Результаты на 67 000 соискателей (call-center, Филиппины):
• Кандидаты, прошедшие интервью у чат-бота Anna AI, на 12% чаще получали оффер.
• Среди получивших оффер — на 18% чаще выходили на работу.
• Соискатели вдвое реже жаловались на дискриминацию по полу.
• Anna AI охватывала в среднем 9 тем против 5 у рекрутеров.
• 71% кандидатов оценили опыт интервью с ботом позитивно.
⚠️ Минусы: 5% интервью заканчивались раньше времени, 7% имели техсбои.
💡 Почему это важно:
AI-интервью могут быть более объективными, масштабируемыми и удобными для кандидатов, чем живое интервью с рекрутером. Особенно это заметно в массовом найме для entry-level позиций.
📌 Полный разбор исследования
🔥4❤2
This media is not supported in your browser
VIEW IN TELEGRAM
📁 Илон Маск о Optimus v3:
🤖 Робот получит:
- Человеко-подобную ловкость
- ИИ, понимающий реальность
- Массовое производство в объёмах, которых ещё не достигала ни одна робототехническая компания
Маск считает, что это может стать самым большим продуктом в истории.
💵 Цена:
- На старте: $30,000–$40,000 за единицу
- При масштабировании до ~1 млн роботов в год: падение цены до $20,000
👉 Если всё пойдёт по плану, Optimus станет не просто демонстрацией технологий, а реальным массовым продуктом, меняющим рынок труда и быта.
🤖 Робот получит:
- Человеко-подобную ловкость
- ИИ, понимающий реальность
- Массовое производство в объёмах, которых ещё не достигала ни одна робототехническая компания
Маск считает, что это может стать самым большим продуктом в истории.
💵 Цена:
- На старте: $30,000–$40,000 за единицу
- При масштабировании до ~1 млн роботов в год: падение цены до $20,000
👉 Если всё пойдёт по плану, Optimus станет не просто демонстрацией технологий, а реальным массовым продуктом, меняющим рынок труда и быта.
❤7👍2🔥1👏1
🚀 Unsloth показал, как динамическая квантизация (Dynamic GGUFs) может радикально ускорить и облегчить работу LLM, не теряя качество.
В чём суть
Обычные методы квантизации уменьшают разрядность весов модели одинаково для всех слоёв.
Unsloth пошёл дальше: каждому слою подбирается своё число бит.
- Ключевые слои → 6–8 бит (чтобы сохранить точность).
- Второстепенные → 1–3 бита (для максимального сжатия).
Результаты, которых удалось добиться:
- 671B DeepSeek-V3.1: сжатие модели с 671GB до 192GB (–75%).
- 1-бит версия уже обгоняет GPT-4.1 и GPT-4.5 в «no-thinking» задачах.
- 3-бит версия превосходит Claude-4-Opus в «thinking» задачах.
- 5-бит версия догоняет и стабильно держит уровень SOTA.
🟢 Почему это интересно:
- Сжатие → модели становятся доступнее для запуска на меньших GPU.
- Качество не падает, а иногда даже растёт за счёт умного распределения битности.
- Тесты на Aider Polyglot benchmark показывают лучшие результаты среди существующих quant-моделей.
🟢 Итог
Dynamic GGUF от Unsloth — это не просто ещё один способ «урезать» модель, а технология, которая делает триллионные LLM компактными, быстрыми и при этом сверхточными.
⭐Пост: https://docs.unsloth.ai/basics/unsloth-dynamic-ggufs-on-aider-polyglot
#Unsloth #LLM #Quantization #AI #AiderPolyglot
В чём суть
Обычные методы квантизации уменьшают разрядность весов модели одинаково для всех слоёв.
Unsloth пошёл дальше: каждому слою подбирается своё число бит.
- Ключевые слои → 6–8 бит (чтобы сохранить точность).
- Второстепенные → 1–3 бита (для максимального сжатия).
Результаты, которых удалось добиться:
- 671B DeepSeek-V3.1: сжатие модели с 671GB до 192GB (–75%).
- 1-бит версия уже обгоняет GPT-4.1 и GPT-4.5 в «no-thinking» задачах.
- 3-бит версия превосходит Claude-4-Opus в «thinking» задачах.
- 5-бит версия догоняет и стабильно держит уровень SOTA.
- Сжатие → модели становятся доступнее для запуска на меньших GPU.
- Качество не падает, а иногда даже растёт за счёт умного распределения битности.
- Тесты на Aider Polyglot benchmark показывают лучшие результаты среди существующих quant-моделей.
Dynamic GGUF от Unsloth — это не просто ещё один способ «урезать» модель, а технология, которая делает триллионные LLM компактными, быстрыми и при этом сверхточными.
⭐Пост: https://docs.unsloth.ai/basics/unsloth-dynamic-ggufs-on-aider-polyglot
#Unsloth #LLM #Quantization #AI #AiderPolyglot
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤11👍4🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
В Яндексе придумали «Ночь музеев» в мире IT, а Сбер, Т-банк, Х5 и Lamoda поддержали идею и присоединились. Если вы не успели зарегистрироваться как офлайн-участник – подключайтесь онлайн.
Можно переключаться между двумя треками.
– шоу для разработчиков со стендап-комиком Севой Ловкачёвым;
– обсуждение pet-проектов и изобретательства среди инженеров;
– юмор в борьбе со стрессами: мемы как способ выжить в бигтехе.
– разберём, чем отличается бигтех в России и за рубежом: каких специалистов ищут компании, есть ли культурные отличия?
– поговорим с Маратом Мавлютовым – руководителем подразделения из Яндекса, разрабатывающего роботов-доставщиков;
– обсудим, как AI помогает разработчикам сейчас и как будет помогать в будущем.
Реклама. ООО "Яндекс". ИНН 7736207543
Please open Telegram to view this post
VIEW IN TELEGRAM
🧠 ThinkMesh: Параллельное мышление для LLM
ThinkMesh — это библиотека на Python, позволяющая запускать различные пути рассуждений параллельно, используя внутренние сигналы уверенности для перераспределения вычислительных ресурсов. Она поддерживает оффлайн-работу с Hugging Face Transformers и API.
🚀 Основные моменты:
- Параллельное рассуждение с динамическим перераспределением бюджета
- Оффлайн-работа с Transformers и интеграция с OpenAI
- Асинхронное выполнение с динамическими микро-пакетами
- Поддержка пользовательских верификаторов и редукций
- Кэширование и метрики для отслеживания производительности
📌 GitHub: https://github.com/martianlantern/ThinkMesh
#python
ThinkMesh — это библиотека на Python, позволяющая запускать различные пути рассуждений параллельно, используя внутренние сигналы уверенности для перераспределения вычислительных ресурсов. Она поддерживает оффлайн-работу с Hugging Face Transformers и API.
🚀 Основные моменты:
- Параллельное рассуждение с динамическим перераспределением бюджета
- Оффлайн-работа с Transformers и интеграция с OpenAI
- Асинхронное выполнение с динамическими микро-пакетами
- Поддержка пользовательских верификаторов и редукций
- Кэширование и метрики для отслеживания производительности
📌 GitHub: https://github.com/martianlantern/ThinkMesh
#python
GitHub
GitHub - martianlantern/ThinkMesh: Parallel thinking for LLMs. Confidence‑gated, strategy‑driven, offline‑friendly
Parallel thinking for LLMs. Confidence‑gated, strategy‑driven, offline‑friendly - martianlantern/ThinkMesh
🔥8❤3👍2
Создавая будущее: магистратура по прикладному ИИ
Нейросети пишут код, создают контент и даже помогают в разработке лекарств. Спрос на ИИ-специалистов взлетел на 80% всего за год. А IT-гиганты, банки и телеком охотятся за талантами.
Станьте таким специалистом с онлайн-магистратурой «Прикладной искусственный интеллект» от УрФУ и Нетологии. Это программа, где вы не просто учитесь, а решаете реальные задачи от Яндекса, МТС Банка и Dodo Brands. Где вместо скучных лекций — проекты и хакатоны, а преподаватели — практики из ведущих компаний.
За 2 года вы научитесь:
Использовать Python и его библиотеки.
Генерировать гипотезы и подбирать алгоритмы для разных моделей.
Строить конвейеры обработки данных.
Автоматизировать ML-пайплайн.
А ещё узнаете, как ИИ применяют в медицине, e-commerce и банковском секторе. Потому что будущее AI — не только в IT.
Эта программа — одна из немногих, куда можно поступить в сентябре. Если после летнего отдыха вы полны сил и готовы к новому, сделайте уверенный шаг в ИИ-сферу.
Подать документы можно до 18 сентября.
Узнайте подробности по ссылке: https://netolo.gy/emST
Реклама. ООО "Нетология". ИНН 7726464125. Erid:2VSb5yLpPFw
Нейросети пишут код, создают контент и даже помогают в разработке лекарств. Спрос на ИИ-специалистов взлетел на 80% всего за год. А IT-гиганты, банки и телеком охотятся за талантами.
Станьте таким специалистом с онлайн-магистратурой «Прикладной искусственный интеллект» от УрФУ и Нетологии. Это программа, где вы не просто учитесь, а решаете реальные задачи от Яндекса, МТС Банка и Dodo Brands. Где вместо скучных лекций — проекты и хакатоны, а преподаватели — практики из ведущих компаний.
За 2 года вы научитесь:
Использовать Python и его библиотеки.
Генерировать гипотезы и подбирать алгоритмы для разных моделей.
Строить конвейеры обработки данных.
Автоматизировать ML-пайплайн.
А ещё узнаете, как ИИ применяют в медицине, e-commerce и банковском секторе. Потому что будущее AI — не только в IT.
Эта программа — одна из немногих, куда можно поступить в сентябре. Если после летнего отдыха вы полны сил и готовы к новому, сделайте уверенный шаг в ИИ-сферу.
Подать документы можно до 18 сентября.
Узнайте подробности по ссылке: https://netolo.gy/emST
Реклама. ООО "Нетология". ИНН 7726464125. Erid:2VSb5yLpPFw
❤3🎉2