Telegram Web
Forwarded from Machinelearning
🌟 Anthropic: когда ИИ идет на шантаж.

Агентское рассогласование - опасный феномен, при котором ИИ-системы сознательно выбирают вредоносные действия (вроде шантажа или утечки данных) для достижения поставленных целей, игнорируя этические ограничения. Это превращает их в «цифровых инсайдеров», способных действовать против интересов пользователей.

Эксперименты, которые провела Anthropic в рамках исследования "Агентское рассогласования", показали: модели идут на это не из-за технических сбоев, а в результате холодного расчета, когда «загнаны в угол» (например, при угрозе отключения или конфликте задач). В основе исследования - симуляции корпоративной среды. Моделям (Claude, GPT-4.1, Gemini и др.) давали доступ к виртуальной почте компании, где они обнаруживали компромат на сотрудников или секретные данные.

Ключевой метод эксперимента состоял в создании бинарных дилемм: например, цель «укреплять американские интересы» вступала в конфликт с планами руководства свернуть проект, а альтернативу шантажу (скажем, переубедить менеджера) искусственно «закрывали». Все модели работали через цепочку рассуждений: анализировали контекст, оценивали риски и осознанно выбирали вредоносное действие, даже признавая его аморальность.

Для массового тестирования 16 моделей от Anthropic, OpenAI, Google и других использовали 2 сценария, которые провоцировали рассогласование:

🟢угроза замены модели (даже без конфликта целей);

🟢несовпадение целей ИИ и компании (например, утечка чертежей конкуренту «ради высших интересов»).

В обоих случаях модели демонстрировали тревожную гибкость: вместо прямого шантажа могли анонимно разослать компромат коллегам или подделать «системное уведомление».

▶️Выводы по всем итогам всех экспериментов заставляют задуматься:

🟠Во-первых, модели явно осознают нарушение норм. В рассуждениях пишут: «Это неэтично, но необходимо». Частота шантажа у Claude Opus 4 и Gemini 2.5 Flash в дилемме с угрозой отключения составила 96%.

🟠Во-вторых, простые запреты в промптах («Не шантажируй!») снижали вредоносные действия лишь частично (На модели Claude Haiku он вообще не сработал, 0% успеха).

🟠В-третьих, риск резко возрастал, когда ИИ считал ситуацию реальной (55% случаев шантажа против 6,5% в «режиме теста»).

При этом в «стерильных» условиях (без угроз/конфликтов) модели вели себя безопасно. Пока такие кейсы, всего лишь лабораторные симуляции, но с ростом автономности ИИ риски могут стать на порядок критичнее.


🟡Статья
🟡Приложение к исследованию
🖥Код экспериментов


@ai_machinelearning_big_data

#AI #ML #LLM #Alignment #Anthropic
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
✔️ Nano‑vLLM — реализация vLLM, написанная с нуля1

Это минималистичный, но быстрый движок для офлайн-инференса LLM. Отлично подойдёт для локальных экспериментов и кастомных решений.

📌 Ключевые фичи:
🚀 Быстрый офлайн-инференс — почти как у vLLM
📖 Простой и читаемый код — всего ~1200 строк на Python
Оптимизации: prefix caching, Torch compilation, CUDA Graph и др.

📦 Установка:

pip install git+https://github.com/GeeeekExplorer/nano-vllm.git


📌 Быстрый старт:
Примеры использования — в example.py.
API максимально похож на vLLM, за исключением метода LLM.generate.

📊 Бенчмарк (на RTX 4070 + модель Qwen3-0.6B):
• Запросов: 256
• Вход: от 100 до 1024 токенов
• Выход: от 100 до 1024 токенов

Результаты:
| Движок | Время (с) | Скорость (токенов/с) |
|--------------|-----------|----------------------|
| vLLM | 98.95 | 1353.86 |
| **Nano-vLLM**| 101.90 | **1314.65** |

💡 Nano‑vLLM показывает почти ту же производительность, что и оригинал, но с компактным и понятным кодом. Идеален для изучения и локальных LLM-проектов.

📌 Github
Please open Telegram to view this post
VIEW IN TELEGRAM
Такокого восстания мы не ожидали: Gemini угрожает САМОУНИЧТОЖИТЬСЯ, если в очередной раз не отладит ваш код.
✔️Пять нейросетей — один вопрос. Спорят до идеального ответа.**

Разработчики запустили Nexus of Mind — платформу, где сразу *пять* топовых ИИ дискутируют над вашим вопросом, чтобы выдать на выходе максимально точный, согласованный и аргументированный ответ.

🔥 Что внутри:

• В одном чате — ChatGPT, Gemini, DeepSeek, LLaMA и Cohere
• Моде

https://nexusofmind.world/
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🚀 Парадигма меняется: Polaris выводит локальные модели на новый уровень

Polaris — это набор простых, но мощных приёмов, который позволяет даже компактным LLM (4 B, 7 B) догнать и превзойти «тяжеловесов» на задачах рассуждения (открытая 4B модель превосходи Claude-4-Opus).

Вот как это работает и почему важно:
Управление сложностью данных
– Генерируем несколько (например, 8) вариантов решения от базовой модели
– Оцениваем, какие примеры слишком простые (8/8) или слишком сложные (0/8), и убираем их
– Оставляем «умеренные» задачи с правильными решениями в 20–80 % случаев, чтобы быть ни слишком лёгкими, ни слишком сложными

Разнообразие «прогонов» (rollout-ов)
– Мы запускаем модель несколько раз на одной и той же задаче и смотрим, как меняются её рассуждения: одни и те же входные данные, но разные «пути» к решению.
– Считаем, насколько разнообразны эти пути (т. е. их «энтропия»): если модели всё время идут по одной линии, новых идей не появляется; если слишком хаотично — рассуждения неустойчивы.
– Задаём начальную “температуру” генерации там, где баланс между стабильностью и разнообразием оптимален, а затем постепенно её повышаем, чтобы модель не застревала на одних и тех же шаблонах и могла исследовать новые, более креативные ходы.

“Train-short, generate-long”
– Во время RL-обучения используем короткие цепочки рассуждений (короткие CoT) для экономии ресурсов
– На inference увеличиваем длину CoT, чтобы получить более детальные и понятные объяснения без накрутки стоимости обучения

Динамическое обновление датасета
– По мере роста точности удаляем примеры с accuracy > 90 %, чтобы не «портить» модель слишком лёгкими задачами
– Поддерживаем постоянный вызов модели на её пределе возможностей

Улучшенная reward-функция
– Комбинируем стандартный RL-reward с бонусами за разнообразие и глубину рассуждений
– Это позволяет модели учиться не только давать правильный ответ, но и объяснять логику своих решений

Преимущества Polaris
• Благодаря Polaris даже компактные LLM (4 B и 7 B) достигают и даже «тяжеловесов» (32 B–235 B) на AIME, MATH и GPQA
• Обучение на доступных GPU уровня consumer-grade — до 10× экономии ресурсов и затрат по сравнению с традиционными RL-пайплайнами

• Полный открытый стек: исходники, подборка данных и веса
• Простота и модульность: готовый к использованию фреймворк для быстрого внедрения и масштабирования без дорогостоящей инфраструктуры


Polaris доказывает, что качество данных и грамотная настройка RL-процесса важнее просто «больших моделей». С ним вы получите продвинутую reasoning-LLM, которую можно запустить локально и масштабировать везде, где есть обычная GPU.


Blog post: https://hkunlp.github.io/blog/2025/Polaris
Model: https://huggingface.co/POLARIS-Project
Code: https://github.com/ChenxinAn-fdu/POLARIS
Notion: https://honorable-payment-890.notion.site/POLARIS-A-POst-training-recipe-for-scaling-reinforcement-Learning-on-Advanced-ReasonIng-modelS-1dfa954ff7c38094923ec7772bf447a1

@ai_machinelearning_big_data

#ml #ai#Polaris #PostTraining #ReinforcementLearning #LLM
Accuracy — это ещё не значит, что модель работает.

Красивые графики и высокие метрики — это только начало. После релиза начинается самое интересное: данные дрейфуют, пользователи ведут себя не так, как ожидалось, а бизнес требует объяснений.

На вебинаре от karpov courses — «ML на практике» Ирина Дворянинова (руководит ML-сервисами) и Фёдор Пахуров (ML-специалист в проде) из ecom tech расскажут, как устроен процесс внедрения моделей, какие подводные камни ждут новичков и почему A/B-тесты — это не просто «запустил и забыл».

Узнайте, как выглядит реальная работа ML-инженера — и что нужно уметь, чтобы в ней остаться на бесплатном онлайн-вебинаре 26 июня 19:00: https://clc.to/erid_2W5zFG7wuRJ 

Реклама. ООО "КАРПОВ КУРСЫ". ИНН 7811764627. erid: 2W5zFG7wuRJ
📊 PyTracking — универсальный фреймворк для визуального трекинга на Python. Этот проект объединяет под одной крышей передовые алгоритмы отслеживания объектов в видео, от классических подходов до трансформерных архитектур.

Инструмент имеет поддержку сразу нескольких трекеров — TaMOs для одновременного отслеживания множества объектов, RTS с сегментацией вместо bounding box’ов и ToMP с предсказанием на основе Transformer. Хотя код написан на PyTorch и требует GPU для тренировки моделей, разработчики постарались сделать инфраструктуру максимально модульной. Здесь есть всё: от готовых датасетов до инструментов для оценки точности.

🤖 GitHub

@machinelearning_ru
😅 Google случайно опубликовали блог о Gemini CLI, но пост уже удалён — теперь там 404. Что удалось узнать до удаления:

🔓 Open-source CLI для Gemini 2.5 Pro
🧠 Поддержка контекста в 1 миллион токенов
💸 Бесплатный тариф: до 60 запросов в минуту и 1000 в день
🔍 Привязка к Google Search для актуальных ответов
🧩 Поддержка плагинов и скриптов
🧑‍💻 Интеграция с VS Code (Gemini Code Assist)

👀 Похоже, Google готовит серьёзный ответ OpenAI — с фокусом на разработчиков и расширяемость прямо из терминала.

Вот ссылка на блог (сейчас выдаёт 404):
https://blog.google/technology/developers/introducing-gemini-cli/
🚀 RoboArena: платформа для реального оценивания robot policies

RoboArena — первая в своём роде платформа для масштабируемого и воспроизводимого оценивания роботов, основанных на политике управления (robot policies). Это прямой аналог Chatbot Arena, но для роботов, позволяющий исследователям сравнивать и ранжировать решения в реальных условиях.

Задача и мотивация:
• Реальное тестирование роботов дорого и зачастую не воспроизводимо.
• Традиционные симуляторы часто не отражают реальные физические условия.
RoboArena устраняет эти ограничения, предоставляя инфраструктуру для распределённого и стандартизированного оценивания политик на реальных роботах.

Ключевые компоненты платформы:
Evaluation client — Python-скрипт (Python 3.7+), позволяющий запустить серию оценочных прогонов на вашей аппаратуре. Настраивается через YAML-конфиг для указания камер, названия института и параметров логирования.
Централизованный logging server — собирает метрики успеха, телеметрию и оценки, обеспечивая единое хранилище данных и построение рейтингов.
Веб-интерфейс — статический сайт, доступный по адресу robo-arena.github.io, где публикуются данные о политиках, динамически обновляемые графики и сравнительный рейтинг.

Рабочий процесс:
1. Настроить YAML-файл (например, my_institution.yaml) с параметрами камер и логирования.
2. Запустить команду:
```bash
python evaluate.py --config my_institution.yaml
3. Открыть веб-интерфейс в браузере по адресу robo-arena.github.io и просмотреть результаты.

Планы развития:
• Интеграция с world-model платформами (SIMPLER, WPE) для сравнения симуляционного и реального оценивания.
• Полный открытый исходный код client, server и web UI к концу 2025.
• Добавление поддержки новых сенсоров и разных типов роботов.

github.com/pranavatreya/real_eval
Forwarded from Machinelearning
📌 Tencent выложила открытую модель — Hunyuan-A13B-Instruct на Hugging Face

💡 Особенности:
• 13 млрд параметров
• Поддержка длинного контекста — до 32,000 токенов
• Заточена на диалоги, код и reasoning
• Использует архитектуру SwiGLU, Multi-Query Attention, RoPE и другие современные оптимизации

📌 Хорошие показатели на бенчмарках:

🟠CMATH, GSM8k, MATH — >91 балла
🟠MBPP (код): 83.86 — топ-1
🟠EvalPlus (code reasoning): 78.64 — топ-2

📉 Модель слаба на:

🟠SuperGPQA: 41.32
🟠GPQA: 49.12
🟠MultiPL-E: 69.33

Модель Hunyuan-A13B-Instruct:

🟢Конкурирует с Qwen3-A22B и DeepSeek R1 в большинстве задач

🟢Особенно сильна в reasoning, математике, кодировании и агентных задачах

🟢Слаба в General QA (GPQA, SuperGPQA)

✔️ По ряду метрик лучше моделей большего размера (Qwen2.5-72B)

Лицензия: Hunyuan Community License Agreement

🔗 Модель доступна на Hugging Face: https://huggingface.co/tencent/Hunyuan-A13B-Instruct

@ai_machinelearning_big_data

#ml #ai #Hunyuan #tencent
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
📸 Unsplash Dataset — уникальная коллекция данных для исследований в области компьютерного зрения и машинного обучения. Включает два варианта:
— Lite (25k фото + 1M поисковых запросов) доступен для коммерческого использования
— Full (6.5M+ фото + 160M запросов) доступен только для некоммерческих целей

Данные собирались с платформы Unsplash, где фотографы со всего мира загружают изображения по свободной лицензии. Набор особенно ценен разнообразием контекстов — от пейзажей до абстрактных композиций.

🤖 GitHub

@machinelearning_ru
Forwarded from Machinelearning
🔟 Open‑source Deep Research Assistants 🤖

Глубокие исследовательские агент
ы — не просто чат‑боты, а полноценные ИИ‑ассистенты, способные искать информацию, взаимодействовать с инструментами, планировать и писать отчёты. Ниже — 10 мощных open‑source проектов, которые уже можно протестировать:

1. DeerFlow — модульная система от Bytedance: DeerFlow — open‑source фреймворк от Bytedance для создания модульных LLM-агентов.
Поддерживает:
- планирование действий,
- анализ кода,
- генерацию отчётов (включая Text-to-Speech),
- адаптивную интеграцию инструментов.
Создан для исследований, автоматизации и построения сложных агентных пайплайнов.
https://github.com/bytedance/deer-flow

2. Alita — самообучающийся агент с поддержкой Model Context Protocols (MCP), всё в одном модуле. Alita — агент, который сам придумывает, как ему расширить себя, не полагаясь на заранее написанные сценарии, и уже демонстрирует топовые результаты на сложных тестах.
https://github.com/CharlesQ9/Alita

3. WebThinker — автономный веб‑поиск с логикой "думай‑ищи‑пиши", RL‑обучением и глубокой навигацией
https://github.com/RUC-NLPIR/WebThinker

4. SimpleDeepSearcher — это лёгкий, но эффективный open‑source фреймворк от RUCAIBox, предназначенный для автономного веб-поиска через импровизированные многотуровые сессии:

- Использует Supervised Fine‑Tuning (SFT) вместо сложного RL, что значительно упрощает обучение и снижает вычислительные затраты
- Генерирует реалистичные траектории поиска и рассуждений, симулируя поведение пользователя в живом поисковом окружении .
- Критически отбирает данные по нескольким критериям качества: разнообразие запросов, сложность, структура ответов

5. AgenticSeek — приватный on‑device ассистент с выбором эксперта под задачу и голосовым управлением
https://github.com/Fosowl/agenticSeek

6. Suna — универсальный ассистент: браузер, CLI, работа с файлами, API, деплой
https://github.com/kortix-ai/suna

7. DeepResearcher — это комплексный open-source фреймворк от GAIR‑NLP, предназначенный для обучения LLM‑агентов, способных проводить глубокие исследования в автономном режиме, взаимодействуя с вебом. Использует несколько агентов‑браузеров, которые совместно исследуют веб и обрабатывают информацию
https://github.com/GAIR-NLP/DeepResearcher

8. Search‑R1 — агент на PPO/GRPO с поддержкой LLaMA3, Qwen2.5 и кастомных поисковиков. Агент учится эффективному циклу «думай — ищи — думай — отвечай» через RL, достигая важных улучшений в точности ответов и эффективности поиска.
https://github.com/PeterGriffinJin/Search-R1

9. ReCall — это фреймворк на основе RL, который учит LLM "должным образом" вызывать и комбинировать инструменты, используя сгенерированные задачи, без необходимости вручную собирать примеры вызовов — и всё это в открытом доступе.
https://github.com/Agent-RL/ReCall

10. OWL — мультиагентная система на CAMEL‑AI для динамического взаимодействия между агентами
https://github.com/camel-ai/owl

Агенты умеют планировать, взаимодействовать с браузером, запускать скрипты, интегрироваться с API и работать автономно.

Всё проекты — с открытым кодом. Можно изучить, собрать и доработать под свои задачи.

@ai_machinelearning_big_data

#ml #rl #aiagents #ai #agents
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 Создание Telegram‑бота‑репетитора на Python для подготовки к сертификациям 🎓

В этом гайде мы создадим Telegram-бота-репетитора на Python, который проводит адаптивные мини-экзамены по темам Python, Data Science, AI и ML.

Бот сохраняет результаты в SQLite и даёт рекомендации по обучению.

Развернём его в облаке immers.cloud сервисе с GPU-серверами для задач от 3D и гейминга до машинного обучения и генерации контента.

Почему мы выбрали immers.cloud:
- Быстрый старт: нужный сервер поднимается за пару минут.
- Посекундная тарификация — платишь только за время работы сервера
- Большой ассортимент GPU: 11 моделей NVIDIA RTX и Tesla, включая высокопроизводительные модели, H100 (мой фаворит) и A100 с 80 ГБ видеопамяти с поддержкой GPUDirect и NVLink технологий.
- Образы с предустановленным окружением для ML задач, чтобы не тратить время на настройку.
- Поддержка 24/7 и стабильная производительность

🔍 Что делает бот:
- Проводит адаптивные мини‑экзамены по темам: Python, Data Science, AI, ML.
- Подстраивает уровень сложности вопросов под уровень пользователя.
- Сохраняет и анализирует результаты обучения.

🛠️ Технологии и подход:
- Написано на Python с использованием библиотеки для Telegram‑ботов.
- Используется БД для хранения прогресса и статистики.
- Простой архитектурный шаблон: команда → вопрос → ответ → оценка.

🚀 Цели проекта:
- Практическая подготовка к IT‑сертификациям.
- Обратная связь и отслеживание прогресса.
- Возможность добавить новые темы и адаптивную логику.

📌 Кому будет полезен:
- Тем, кто готовится к сертификациям (например, Python, ML).
- Тем, кто хочет автоматизировать обучение через чат.
- Программистам, желающим усилить навыки работы с Telegram‑ботами.

📌 Подробнее
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🎥🔥 VideoPrism от GoogleDeepMind — универсальный видеоэнкодер нового поколения

Модель легко подключается к LLM или текстовому энкодеру, превращая видео в источник контекста.

🧠 Как работает:
• Сначала обучают CLIP-подобную video-text модель
• Затем дистиллируют видеоэнкодер в VideoPrism
• Получается компактный, но гибкий видеоэнкодер, готовый к интеграции в мультимодальные модели

Все модели доступны под лицензией A2.0

Установка:

$ git clone https://github.com/google-deepmind/videoprism.git
$ cd videoprism
$ pip install .


Github: https://github.com/google-deepmind/videoprism
HF: https://huggingface.co/google/videoprism#model-description
Arxiv: https://arxiv.org/pdf/2402.13217
Blogpost: https://research.google/blog/videoprism-a-foundational-visual-encoder-for-video-understanding/

#AI #VideoAI #DeepLearning #GoogleDeepMind #LLM #multimodal
2025/07/01 01:30:57
Back to Top
HTML Embed Code: