Telegram Web
🔐 FATE — промышленный фреймворк для федеративного обучения. Этот проект под эгидой Linux Foundation позволяет компаниям совместно обучать ML-модели, не объединяя исходные данные. В основе — комбинация гомоморфного шифрования и MPC-протоколов, обеспечивающие безопасность на уровне промышленных стандартов.

Фреймворк обладает большим разнообразием сценариев: от классических алгоритмов вроде логистической регрессии до трансферного обучения и работы с LLM. Модульная архитектура делает решение гибким для разных инфраструктур.

🤖 GitHub

@machinelearning_ru
3👍1🔥1
⚡️ Почему лучшие разработчики всегда на шаг впереди?

Потому что они знают, где брать настоящие инсайд!
Оставь “программирование в вакууме” в прошлом, выбирай свой стек — подпишись и погружайся в поток идей, лайфхаков и знаний, которые не найдёшь в открытом доступе.

ИИ: www.tgoop.com/ai_machinelearning_big_data
Python: www.tgoop.com/pro_python_code
Linux: www.tgoop.com/linuxacademiya
Devops: www.tgoop.com/DevOPSitsec
Базы данных: www.tgoop.com/sqlhub
Мл собес www.tgoop.com/machinelearning_interview
C++ www.tgoop.com/cpluspluc
Docker: www.tgoop.com/DevopsDocker
Хакинг: www.tgoop.com/linuxkalii
МЛ: www.tgoop.com/machinelearning_ru
Data Science: www.tgoop.com/data_analysis_ml
Javascript: www.tgoop.com/javascriptv
C#: www.tgoop.com/csharp_ci
Java: www.tgoop.com/java_library
Python собеседования: www.tgoop.com/python_job_interview
Мобильная разработка: www.tgoop.com/mobdevelop
Golang: www.tgoop.com/Golang_google
React: www.tgoop.com/react_tg
Rust: www.tgoop.com/rust_code
ИИ: www.tgoop.com/vistehno
PHP: www.tgoop.com/phpshka
Android: www.tgoop.com/android_its
Frontend: www.tgoop.com/front
Big Data: www.tgoop.com/bigdatai
МАТЕМАТИКА: www.tgoop.com/data_math
Kubernets: www.tgoop.com/kubernetc
Разработка игр: https://www.tgoop.com/gamedev
Физика: www.tgoop.com/fizmat
SQL: www.tgoop.com/databases_tg

Папка Go разработчика: www.tgoop.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.tgoop.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.tgoop.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.tgoop.com/addlist/mzMMG3RPZhY2M2Iy

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
😆ИТ-Мемы: www.tgoop.com/memes_prog
🇬🇧Английский: www.tgoop.com/english_forprogrammers
🧠ИИ: www.tgoop.com/vistehno

🖥 Chatgpt для кода в тг: @Chatgpturbobot -

📕Ит-книги: https://www.tgoop.com/addlist/BkskQciUW_FhNjEy
💼ИТ-вакансии www.tgoop.com/addlist/_zyy_jQ_QUsyM2Vi

Подпишись, чтобы всегда знать, куда двигаться дальше!
Please open Telegram to view this post
VIEW IN TELEGRAM
👾 GREMLLM — теперь у ваших багов есть сознание

GREMLLM — это необычный Python-класс, в котором все методы и свойства создаются динамически с помощью LLM. Вы описываете, *что за объект вы хотите*, и дальше GREMLLM сам решает, что должно происходить при вызове методов или обращении к полям.

📦 Установка:

pip install gremllm


🔧 Пример:



from gremllm import Gremllm

counter = Gremllm('counter')
counter.value = 5
counter.increment()
print(counter.value) # → 6?
print(counter.to_roman_numerals()) # → VI?


🧩 Возможности:
– Динамическое поведение: всё определяется "на лету" с помощью LLM
– Поддержка OpenAI, Claude, Gemini, и локальных моделей
– Wet Mode: можно строить цепочки вызовов (методы возвращают объекты)
– Verbose Mode: выводит, какой код был сгенерирован
– Умная обработка ошибок и настройка через наследование

⚠️ Это экспериментальный инструмент. Не для продакшена. Но очень интересен для изучения LLM-интеграций в Python-код.

🔗 Репозиторий: https://github.com/ur-whitelab/gremllm
6👎1😁1😱1
Forwarded from Machinelearning
📌 США могут ускорить гонку ИИ, вложив в "Манхэттенский проект ИИ" ресурсы, сопоставимые с программой «Аполлон».

Идея «Манхэттенского проекта для ИИ», витавшая последние месяцы на самом высоком уровне в США, кажется, начинает обретать очертания. Но за громкими сравнениями обычно теряется суть: а что это значит на практике?

Аналитики из Epoch AI решили посчитать, какой вычислительный монстр может появиться, если американское правительство консолидирует ресурсы частного сектора и вложит в проект долю ВВП, сопоставимую с пиком лунной программы.

Epoch AI - некоммерческий исследовательский институт, который изучает траекторию развития искусственного интеллекта, анализирует тренды в вычислениях, данных и алгоритмах, чтобы прогнозировать влияние ИИ на экономику и общество.


🟡Картина получается масштабная.

Расчеты показывают, что к концу 2027 года такой проект мог бы обеспечить тренировочный прогон модели с вычислительной мощностью порядка 2 × 10²⁹ FLOP.

Чтобы понять масштаб: это примерно в 10 000 раз больше, чем потребовалось для обучения GPT-4. По сути, это рывок, который по текущим прогнозам должен был случиться на несколько лет позже.

Финансирование на уровне программы «Аполлон» (около 0.8% ВВП или 244 млрд. долларов сегодня) позволило бы закупить и объединить в один кластер эквивалент 27 миллионов NVIDIA H100. Эта цифра, кстати, совпадает с экстраполяцией текущих доходов NVIDIA от продаж в США.

🟡А хватит ли на это электричества?

27 миллионов GPU потребуют около 7.4 ГВт мощности - это больше, чем потребляет весь город Нью-Йорк. Оказывается, это не главная преграда. Аналитики говорят, что к 2027 году в США и так планируется ввод 8.8 ГВт за счет новых газовых электростанций, значительная часть которых уже предназначена для дата-центров.

При наличии политической воли и используя законодательные инструменты, правительство США сможет сконцентрировать эти мощности в одном месте, так что энергия не станет узким местом.

🟡Разумеется, у сценария есть свои «но».

Геополитическая напряженность, например, вокруг Тайваня, может сорвать поставки чипов. Кроме того, нельзя просто так взять и увеличить масштаб в тысячи раз. Масштабирование требует времени на отладочные прогоны и эксперименты, но это скорее инженерное, а не ресурсное ограничение.

Тем не менее, анализ показывает: при должной координации и инвестициях технологический скачок в области ИИ может произойти гораздо быстрее, чем мы думаем. И это уже вполне просчитываемая возможность.

🔜 Статья на Epoch AI

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
4
🧠 ChatGPT поставил диагноз, который не могли найти врачи за 10 лет

На Reddit набирает популярность история пользователя, который десятилетие мучился от странных симптомов. Он проходил МРТ, КТ, сдавал десятки анализов — врачи проверяли его даже на рассеянный склероз и болезнь Лайма. Но точного диагноза так и не было.

В отчаянии он решил попробовать ChatGPT: загрузил свои медицинские данные и попросил ИИ проанализировать всё.

🔍 Ответ оказался неожиданным: ChatGPT предположил редкую мутацию гена MTHFR, нарушающую усвоение витамина B12. Врач подтвердил диагноз — и лечение оказалось простым: нужно было лишь поднять уровень B12 в организме.

> «Прошло несколько месяцев, и мои симптомы почти исчезли», — пишет он.

💬 Самое интересное — он оказался не один. В комментариях десятки пользователей рассказали похожие истории: ИИ помогал находить редкие болезни, давал новые идеи, которые врачи упускали.

⚠️ Конечно, ChatGPT — не замена врачу. Но как второй взгляд, особенно когда традиционная медицина бессильна — он может реально помочь.

📌 Источник

🤔 А ты бы доверил свой диагноз ИИ?
13👍3😁2🔥1
🚀Kafka must-have инструмент для современных проектов MLOps!

Присоединяйся к вебинару и узнай, как настроить Kafka для обработки потоковых данных и интегрировать её в MLOps-проекты. Вебинар проходит в рамках подписки на курсы OTUS, которая даёт возможность приобрести 3 курса по цене одного.

🔑 Что будет:
— Практическое и теоретическое руководство по настройке Kafka в Docker и взаимодействию с ней через Python.
— Обзор инструментов для работы с Kafka: поднятие UI-интерфейса и управление потоками данных.
— Примеры использования Kafka для связи микросервисов и обзор ключевых функций, делающих её незаменимой брокером сообщений.
— Как использовать Kafka в MLOps: сбор данных для ML-моделей, мониторинг их работы и интеграция предсказаний в реальном времени.

🚀Регистрация по ссылке - https://otus.pw/18rU/
Подробнее о подписке OTUS - https://otus.pw/SMQu/

👉 Запишись сейчас, количество мест ограничено!
2👍1
🩺 II-Medical-32B-Preview - новый мощный медецинский LLm

🏆 90% на MedQA | 71.5% средний результат
(для сравнения: студенты-медики ~60%)
💻 Открытый, код и датасеты
🚀 Работает на одном GPU

+ Внутри 3 датасета:
II-Medical-SFT, II-Medical-RL, ChatDoctor-RL

https://huggingface.co/Intelligent-Internet/II-Medical-32B-Preview
🔥8🥰43
📢 Skywork представила Skywork‑Reward‑V2 — новый подход к обучению reward‑моделей через синергию человека и ИИ

🔍 В свежем релизе Skywork показала, как масштабировать создание данных предпочтений (preference data) с помощью Human‑AI Synergy — совместного отбора, микширования и обучения.

Что важно:
Детализированная методология по сбору и очистке данных для reward-моделей
Использование различных источников: человеческие оценки, LLM-аннотации, активное обучение
Комбинация нескольких подходов: supervision, self-training, rejection sampling, data ranking
Отличные результаты на новом RewardBench 2 — одном из первых публичных сравнений моделей

🚀 Модели уже опубликованы: Skywork‑Reward‑V2 теперь доступна и готова к использованию в вашем fine-tuning пайплайне.

📖 Чтение обязательно для тех, кто строит RLAIF и хочет улучшить reward-сигналы без десятков тысяч ручных аннотаций.

🔗 Подробнее: https://huggingface.co/Skywork/Skywork-Reward-V2
Магистратура по Data Science от Авито и ФКН ВШЭ — осваивайте современные навыки в ML вместе с экспертами топового вуза и лидерами рынка цифровых продуктов.

Получите шанс занять одно из 30 бюджетных мест и построить уникальный образовательный трек — будут актуальные дисциплины по выбору и возможность пройти оплачиваемую стажировку в Авито уже во время учёбы!


Почему стоит подать заявку:
— практика на реальных digital-продуктах с миллионами пользователей;
обучение у топов индустрии: ведущих преподавателей ВШЭ и экспертов Авито;
— применение современных инструментов для анализа данных, ML, работы с ИИ и управления проектами;
— диплом гособразца и комфортный график — очно или онлайн, удобно совмещать с работой.

Подавайте заявку и делайте буст в карьере — получите возможность работать в одной из сильнейших DS-команд на рынке: https://u.to/xvxOIg
1👍1
🔥 Beelzebub — продвинутый low-code honeypot с LLM 🔥

Beelzebub — легковесный honeypot-фреймворк с ядром LLM, текстом симулирующий «живую» систему. Позволяет безопасно ловить атакующих, создавая иллюзию реального сервера.

Основные возможности:
- Модульная настройка через YAML-конфиги для добавления сервисов и портов
- Поддержка SSH, HTTP, TCP и MCP-протоколов на основе ИИ
- Сбор метрик Prometheus и интеграция с ELK
- Запуск через Docker, Helm или Kubernetes

Быстрый старт:


git clone https://github.com/mariocandela/beelzebub.git
cd beelzebub
docker-compose up -d


📌 Github
👍21🔥1
✔️ NovelAI выложила в открытый доступ веса своей модели Diffusion Anime V2.

Модель генерации изображений в стиле аниме основана на Stable Diffusion 1.5, генерирует в разрешении до 1024x1024 пикселей и использует предпоследний слой энкодера CLIP.

Diffusion Anime V2 распространяется под двойной лицензией, которая допускает только некоммерческое использование с обязательным указанием авторства. NovelAI напоминает, что V2 является устаревшей версией, а все новые модели остаются проприетарными и эксклюзивными для их веб-сервиса. Веса Diffusion Anime V2 доступны на Hugging Face.
blog.novelai.net
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍1🔥1
Forwarded from Machinelearning
⚡️ 5Gemma: новая коллекция энкодер-декодер моделей от Google.

Инженеры Google DeepMind решили вдохнуть новую жизнь в классический подход «энкодер-декодер» выпустив семейство моделей T5Gemma.

Главная интрига заключается не в том, что они сделали, а в том, как. Вместо того чтобы обучать модели с нуля, они разработали метод «адаптации»: взяли уже готовую и предобученную модель-декодер Gemma 2 и, по сути, пересобрали ее в двухкомпонентную энкодер-декодерную архитектуру.

Метод открыл дорогу для интересных экспериментов. Например, стало возможно создавать «несбалансированные» модели, комбинируя большой энкодер с маленьким декодером, скажем, 9-миллиардный энкодер и 2-миллиардный декодер.

Такая конфигурация идеальна для задач суммаризации, где глубокое понимание исходного текста (работа энкодера) гораздо важнее, чем генерация сложного и витиеватого ответа (работа декодера). Это дает инженерам гибкий инструмент для тонкой настройки баланса между качеством и скоростью работы.

🟡Но самое важное - прирост в производительности.

На тестах T5Gemma показывает результаты на уровне или даже лучше своих «однокомпонентных» аналогов. Асимметричная модель T5Gemma 9B-2B демонстрирует значительно более высокую точность, чем базовая Gemma 2 2B, но при этом скорость инференса у них почти идентична.

Даже сбалансированная T5Gemma 9B-9B оказывается точнее, чем Gemma 2 9B, при сопоставимой задержке. Это прямое доказательство того, что двухкомпонентная архитектура может быть и умнее, и эффективнее.

T5Gemma показывает впечатляющий рост в задачах, требующих логических рассуждений. Например, на математическом тесте GSM8K модель T5Gemma 9B-9B набирает на 9 баллов больше, чем Gemma 2 9B.

Эффект становится еще более выраженным после инструктивной донастройки. Здесь разрыв в производительности резко увеличивается: на бенчмарке MMLU модель T5Gemma 2B-2B IT опережает аналог Gemma 2 2B IT почти на 12 баллов.

🟡Google выложила в открытый доступ целую линейку чекпойнтов:

🟢T5 (Small, Base, Large, XL) на базе Gemma (2B, 9B);

🟢«Несбалансированную» версию 9B-2B для экспериментов;

🟢Модели с разными целями обучения (PrefixLM для генерации, UL2 для качества представлений).


🔜 Попробовать возможности T5Gemma или настроить их под свои нужды можно с помощью блокнота Colab. Модели также доступны в Vertex AI.


📌Лицензирование: Gemma License.


🟡T5gemma: https://developers.googleblog.com/en/t5gemma/
🟡Статья: https://arxiv.org/abs/2504.06225
🟡Скачать модель: https://huggingface.co/collections/google/t5gemma-686ba262fe290b881d21ec86

@ai_machinelearning_big_data

#AI #ML #T5Gemma #Google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
7👍2
Google представили GenAI Processors — open-source библиотеку для создания AI-приложений в реальном времени

GenAI Processors — это новый инструмент от команды Google DeepMind, разработанный для быстрой сборки потоковых и мультимодальных AI‑систем. Библиотека обеспечивает удобную работу с цепочками обработки данных, модульную архитектуру и поддержку стриминга.

Основные возможности:

— Потоковый ввод/вывод (stream-based I/O)
— Простая сборка пайплайнов через chaining
— Модульность и переиспользуемость (composability)
— Поддержка Gemini и Gemini Live API
— Асинхронная архитектура с минимальной задержкой

🔧 GenAI Processors позволяет разработчикам легко собирать голосовых агентов, мультимодальные интерфейсы и реактивные приложения на базе LLM.

🔗 GitHub: https://github.com/google-gemini/genai-processors
📖 Блог: https://developers.googleblog.com/en/genai-processors
🔥4👍32
2025/07/12 10:08:42
Back to Top
HTML Embed Code: