tgoop.com/max_dot_sh/138
Last Update:
Искал статьи / работы рисерчеров, участвовавших в разработке Deep Research и наткнулся на блог одного из ключевых авторов технологии — Джейсона Вэя (Jason Wei). Ссылка на блог. Джейсон является первым автором статьи про Chain of Thought ещё со времён работы в Google Brain (теперь часть Дип Майнда).
В блоге Джейсон интересно пишет свои мысли про рисерч, как его вести, как строить карьерный путь и немного рефлексии на тему своих же научных статей.
Из интересного про RL — Асимметрия верификации. Ссылка
Множество задач требуют значительных усилий для генерации решения, но при этом легко поддаются проверке. Взять судоку или кроссворд. А вот написание эссе на заданную тему — напротив: сгенерировать его для модели несложно, а вот провести факт-чекинг и оценить содержание гораздо труднее. В этом и заключается асимметрия верификации: есть задачи, которые можно быстро и дёшево проверить на корректность (при наличии эталонного ответа), но при этом неясно, как к этому ответу прийти; а есть такие, к которым можно сгенерировать тысячи вариантов, но трудно определить, какие из них действительно правильные.
Тут и начинается самое интересное — поиск способов уменьшения асимметрии. Для большого класса сложных задач это действительно возможно. Например, асимметрию можно значительно снизить для задач по математике и программированию (Картинка к посту). Как? Если для задачи есть эталонное решение или тесты на корректность, то в процессе эволюции, какой бы сложной она ни была, генерация правильного ответа становится задачей RL-оптимизации.
Путём таких рассуждений автор приходит к формулировке условного "закона":
Verifier’s law: The ease of training AI to solve a task is proportional to how verifiable the task is. All tasks that are possible to solve and easy to verify will be solved by AI.
И дальше выделяет пять свойств, которыми должна обладать задача, чтобы быть "легко" решённой LLM:
Автор вполне логично считает, что большинство задач, которые можно свести к быстрой верификации, будут решены в ближайшие годы.
Отдельно можно заметить, что большинство популярных бенчмарков как раз обладают всеми свойствами задачи для верификаци (MMLU, SWE bench, GSM8K, тот же Humanity's Last Exam). Потому эти бенчмарки и популярны, и потому в тех аспектах, что они проверяют (код, общие знания, математику) LLM-ы развиваются активнее всего.

