🕶 Цукерберг представил новые ИИ-очки Ray-Ban Display AI Glasses .
Очки должны поступить в продажу в конце сентября по цене 799 долларов.
По задумке, это почти что «очки Тони Старка»:
- дисплей с разрешением 600х600 пикселей
- встроенные микрофоны, камеры и динамики
- управление через голос или жесты с помощью ЭМГ-браслета
- экран сбоку: не мешает обзору и остаётся невидимым для окружающих
Идея проста — пользователь задаёт очкам команды, а они выводят информацию на дисплей или озвучивают её.
Выглядит впечатляюще, но во время публичного анонса произошёл конфуз: очки у Марка Цукерберга и его команды прямо на сцене начали лагать и не заработали должным образом.
Для премьеры устройства такого уровня — довольно заметный фейл.
Акции компании сразу же поползли вниз.
🟠 Анонс
@neural
Очки должны поступить в продажу в конце сентября по цене 799 долларов.
По задумке, это почти что «очки Тони Старка»:
- дисплей с разрешением 600х600 пикселей
- встроенные микрофоны, камеры и динамики
- управление через голос или жесты с помощью ЭМГ-браслета
- экран сбоку: не мешает обзору и остаётся невидимым для окружающих
Идея проста — пользователь задаёт очкам команды, а они выводят информацию на дисплей или озвучивают её.
Выглядит впечатляюще, но во время публичного анонса произошёл конфуз: очки у Марка Цукерберга и его команды прямо на сцене начали лагать и не заработали должным образом.
Для премьеры устройства такого уровня — довольно заметный фейл.
Акции компании сразу же поползли вниз.
@neural
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🩺 GPT-5 обогнал врачей в медицинских задачах
Исследователи проверили GPT-5 на реальных тестах для медицины: анализ текста и изображений вместе — так, как это делают врачи каждый день.
📊 Что получилось:
- +29,6% к уровню рассуждений
- +36,2% к пониманию информации
- В некоторых заданиях GPT-5 дал более точные ответы, чем врачи
⚡ Это уже не «бот для забавных фактов». ИИ выходит на уровень клинического мышления: он учится ставить диагнозы и принимать решения.
Да, ошибки и «галлюцинации» ещё бывают. Но направление ясно: ИИ быстро сокращает разрыв в самой важной области медицины — диагностике.
❓Когда ИИ начнёт читать снимки лучше врача — на чьё решение вы захотите опираться: человека, алгоритма или обоих вместе?
Исследователи проверили GPT-5 на реальных тестах для медицины: анализ текста и изображений вместе — так, как это делают врачи каждый день.
📊 Что получилось:
- +29,6% к уровню рассуждений
- +36,2% к пониманию информации
- В некоторых заданиях GPT-5 дал более точные ответы, чем врачи
⚡ Это уже не «бот для забавных фактов». ИИ выходит на уровень клинического мышления: он учится ставить диагнозы и принимать решения.
Да, ошибки и «галлюцинации» ещё бывают. Но направление ясно: ИИ быстро сокращает разрыв в самой важной области медицины — диагностике.
❓Когда ИИ начнёт читать снимки лучше врача — на чьё решение вы захотите опираться: человека, алгоритма или обоих вместе?
🚀 EmbeddingGemma — лёгкие SOTA-эмбеддинги
🔹 308M параметров, построена на Gemma 3
🔹 Лидирует в MTEB среди моделей <500M (мультиязычные, английский, код)
🔹 По качеству сопоставима с моделями в 2 раза больше
🔹 Эффективна даже при 4-битной квантовке и 128-мерных эмбеддингах
⚙️ Технические фишки:
- инициализация через encoder-decoder + геометрическая дистилляция,
- spread-out регуляризатор + model souping для устойчивости.
📱 Подходит для on-device сценариев и задач с высоким пропуском (high-throughput).
https://ai.google.dev/gemma/docs/embeddinggemma?hl=ru
#AI #Embeddings #Gemma3 #MTEB #NLP
🔹 308M параметров, построена на Gemma 3
🔹 Лидирует в MTEB среди моделей <500M (мультиязычные, английский, код)
🔹 По качеству сопоставима с моделями в 2 раза больше
🔹 Эффективна даже при 4-битной квантовке и 128-мерных эмбеддингах
⚙️ Технические фишки:
- инициализация через encoder-decoder + геометрическая дистилляция,
- spread-out регуляризатор + model souping для устойчивости.
📱 Подходит для on-device сценариев и задач с высоким пропуском (high-throughput).
https://ai.google.dev/gemma/docs/embeddinggemma?hl=ru
#AI #Embeddings #Gemma3 #MTEB #NLP
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
Модель ростроенная на базе open-source Hunyuan3D 2.1 и называемая «ControlNet для 3D», система решает проблемы кривых генераций и искажённой геометрии, интегрируя до четырёх условий контроля.
Две ключевые инновации:
- Лёгкий унифицированный энкодер управления для эффективного мультимодального фьюжна
- Стратегия прогрессивного обучения по сложности, повышающая устойчивость модели
Возможности:
- Управление по одному изображению и наброску позволяет точно задавать позы для анимаций и аватаров
- Использование облака точек (полного или построенного по глубине): убирает визуальную неопределённость и обеспечивает реалистичную геометрию
- Контроль через bounding box: задаёт пропорции объекта (длину, ширину и высоту) в соответствии с дизайном
- Voxel-контроль: формирует топологию объекта, что удобно и для инженерных, и для творческих сценариев
Tencent дропнули код и веса.
@ai_machinelearning_big_data
#3DGenAI #TencentHunyuan #OpenSourceAI
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡ Менять автоэнкодер в latent diffusion моделях проще, чем кажется.
🚀 DC-Gen — это новый фреймворк для ускорения диффузионных моделей после обучения.
Он переводит любую готовую модель в глубоко сжатое латентное пространство, снижая затраты и многократно ускоряя генерацию.
🔑 Основное
- Высокое разрешение без потерь качества
Версия DC-Gen-FLUX.1-Krea-12B выдаёт то же качество, что и оригинал, но работает в 53 раза быстрее на H100 при 4K.
С NVFP4 картинка 4K генерируется всего за 3.5 секунды на одной NVIDIA 5090 (20 шагов).
- 💸 Низкая стоимость адаптации
Перевод FLUX.1-Krea-12B в глубоко-сжатый автоэнкодер требует всего 40 GPU-дней на H100.
📄 Статья: https://arxiv.org/abs/2509.25180
💻 Код: https://github.com/dc-ai-projects/DC-Gen
🎨 Модели : https://huggingface.co/collections/dc-ai/dc-gen-6899bb095082244f396203e1
#diffusion #deeplearning #AI
🚀 DC-Gen — это новый фреймворк для ускорения диффузионных моделей после обучения.
Он переводит любую готовую модель в глубоко сжатое латентное пространство, снижая затраты и многократно ускоряя генерацию.
🔑 Основное
- Высокое разрешение без потерь качества
Версия DC-Gen-FLUX.1-Krea-12B выдаёт то же качество, что и оригинал, но работает в 53 раза быстрее на H100 при 4K.
С NVFP4 картинка 4K генерируется всего за 3.5 секунды на одной NVIDIA 5090 (20 шагов).
- 💸 Низкая стоимость адаптации
Перевод FLUX.1-Krea-12B в глубоко-сжатый автоэнкодер требует всего 40 GPU-дней на H100.
📄 Статья: https://arxiv.org/abs/2509.25180
💻 Код: https://github.com/dc-ai-projects/DC-Gen
🎨 Модели : https://huggingface.co/collections/dc-ai/dc-gen-6899bb095082244f396203e1
#diffusion #deeplearning #AI
Media is too big
VIEW IN TELEGRAM
GigaChat Vision Team — ваша будущая команда! 😉
Если вы зарегистрируетесь на One Day Offer для NLP- и CV-инженеров и пройдёте все этапы отбора, то уже совсем скоро будете:
✔️ Обучать Vision, 3D/CAD и омни-модальные модели на тысячах A100/H100.
✔️ Создавать live-ассистента на edge-устройствах, а также базовые модели VLA для промышленных проектов: автоматизированных фабрик, автопилотов и роботов.
✔️ Работать с документами: Document Intelligence и разработка VLM OCR.
✔️ Развивать мультимодальную инфраструктуру: от инференса генеративных моделей до создания и авторазметки синтетических данных
Дублируем ссылку на регистрацию — до встречи 4 октября!
Если вы зарегистрируетесь на One Day Offer для NLP- и CV-инженеров и пройдёте все этапы отбора, то уже совсем скоро будете:
✔️ Обучать Vision, 3D/CAD и омни-модальные модели на тысячах A100/H100.
✔️ Создавать live-ассистента на edge-устройствах, а также базовые модели VLA для промышленных проектов: автоматизированных фабрик, автопилотов и роботов.
✔️ Работать с документами: Document Intelligence и разработка VLM OCR.
✔️ Развивать мультимодальную инфраструктуру: от инференса генеративных моделей до создания и авторазметки синтетических данных
Дублируем ссылку на регистрацию — до встречи 4 октября!
🏗️ Новый тренд в AI-инвестициях: вместо привычных «Magnificent Seven» (Apple, Microsoft, Nvidia и др.) инвесторы начинают ставить на Oracle, Broadcom и Palantir как на следующих лидеров.
📊 Что важно знать:
- Oracle заключила контракт с OpenAI на $300 млрд и уже имеет заказы на $455 млрд. Строит новые дата-центры на 4.5 ГВт. Акции выросли на 60% за год.
- Broadcom делает полу-кастомные чипы для Google, Meta и скоро для OpenAI. Недавно получила заказ на $10 млрд. В Q4 ожидается $6.2 млрд выручки от AI.
- Palantir показывает взрывной рост на фоне AI: +48% к выручке во 2 квартале 2025, а акции подскочили на +386% за год. Но бумаги считаются рискованными из-за высокой оценки.
- Axon использует AI для обработки видео с бодикамер — система сама пишет черновики полицейских отчётов.
- SK Hynix зарабатывает на памяти для мегапроекта OpenAI Stargate.
- Nvidia остаётся главным игроком ($4.5 трлн капитализации), но появляются новые конкуренты вроде CoreWeave и кастомных чипов.
💡 Главный вывод: рост в AI всё больше идёт не только за счёт «больших» компаний, а через инфраструктуру, крупные заказы и специализированные чипы.
Источник: afr.com/markets/equity-markets/fund-managers-tip-the-next-winners-of-the-ai-revolution-20250929-p5myml
#AI #инвестиции #акции #cloud #chips
📊 Что важно знать:
- Oracle заключила контракт с OpenAI на $300 млрд и уже имеет заказы на $455 млрд. Строит новые дата-центры на 4.5 ГВт. Акции выросли на 60% за год.
- Broadcom делает полу-кастомные чипы для Google, Meta и скоро для OpenAI. Недавно получила заказ на $10 млрд. В Q4 ожидается $6.2 млрд выручки от AI.
- Palantir показывает взрывной рост на фоне AI: +48% к выручке во 2 квартале 2025, а акции подскочили на +386% за год. Но бумаги считаются рискованными из-за высокой оценки.
- Axon использует AI для обработки видео с бодикамер — система сама пишет черновики полицейских отчётов.
- SK Hynix зарабатывает на памяти для мегапроекта OpenAI Stargate.
- Nvidia остаётся главным игроком ($4.5 трлн капитализации), но появляются новые конкуренты вроде CoreWeave и кастомных чипов.
💡 Главный вывод: рост в AI всё больше идёт не только за счёт «больших» компаний, а через инфраструктуру, крупные заказы и специализированные чипы.
Источник: afr.com/markets/equity-markets/fund-managers-tip-the-next-winners-of-the-ai-revolution-20250929-p5myml
#AI #инвестиции #акции #cloud #chips
#ai #machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Австралийский стартап Crest Robotics из Сиднея представил гигантского паукообразного робота по имени Charlotte.
Он умеет 3D-печатать целые здания, используя сырьё, которое перерабатывает прямо на месте строительства.
Следующая цель команды — научить Charlotte строить сооружения на Луне.
Он умеет 3D-печатать целые здания, используя сырьё, которое перерабатывает прямо на месте строительства.
Следующая цель команды — научить Charlotte строить сооружения на Луне.
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🔥 Сенсей Карпаты выложил новый репозиторий - полный пайплайн обучения LLM с нуля
В проекте есть всё, чтобы собрать свой ChatGPT-клон за $100 и 4 часа:
> • токенизатор
> • pretraining
> • SFT (supervised fine-tuning)
> • RL (reinforcement learning)
> • оценка модели (eval)
Всего 8 000 строк кода, без лишних зависимостей - идеальный учебный пример, чтобы понять, как реально устроено обучение больших языковых моделей.
💡 Это проект из его нового курса Карпаты LLM101n, и отличная возможность прокачать свои ML-навыки на практике.
Можно арендовать GPU в облаке и запустить всё самому - код уже готов к запуску.
Если запустить обучение модели nanochat на облачном GPU-сервере (например, 8×H100), то примерно через 12 часов обучения (стоимость ~300–400 $) модель достигает уровня GPT-2 по качеству на тестовых наборах (CORE-score).
А если тренировать около 40 часов (затраты ~1000 $), решает простые задачи по математике и коду, набирая:
- 40+ на MMLU
- 70+ на ARC-Easy
- 20+ на GSM8K
🧠 Это бесплатная практика топ уровня от мастера, которую не стоит упускать.
🟠 GitHub:https://github.com/karpathy/nanochat
🟠 Технические детали: https://github.com/karpathy/nanochat/discussions/1
@ai_machinelearning_big_data
#LLM #nanochat #MachineLearning #DeepLearning #AI #GPT
В проекте есть всё, чтобы собрать свой ChatGPT-клон за $100 и 4 часа:
> • токенизатор
> • pretraining
> • SFT (supervised fine-tuning)
> • RL (reinforcement learning)
> • оценка модели (eval)
Всего 8 000 строк кода, без лишних зависимостей - идеальный учебный пример, чтобы понять, как реально устроено обучение больших языковых моделей.
💡 Это проект из его нового курса Карпаты LLM101n, и отличная возможность прокачать свои ML-навыки на практике.
Можно арендовать GPU в облаке и запустить всё самому - код уже готов к запуску.
Если запустить обучение модели nanochat на облачном GPU-сервере (например, 8×H100), то примерно через 12 часов обучения (стоимость ~300–400 $) модель достигает уровня GPT-2 по качеству на тестовых наборах (CORE-score).
А если тренировать около 40 часов (затраты ~1000 $), решает простые задачи по математике и коду, набирая:
- 40+ на MMLU
- 70+ на ARC-Easy
- 20+ на GSM8K
🧠 Это бесплатная практика топ уровня от мастера, которую не стоит упускать.
@ai_machinelearning_big_data
#LLM #nanochat #MachineLearning #DeepLearning #AI #GPT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Оксфордские учёные подтвердили худшие опасения: Интернет умирает
Исследователи из Оксфорда выяснили: интернет больше не тот, что раньше:
- В 2020 году ИИ создавал всего 5% контента,
- В 2025 - уже 48%, а к следующему году прогнозируют более 90%.
ИИ-текст стоит очень дешево, человеческий труд - от $10 до $100 за статью.
Рынок выбрал скорость и дешевизну.
Но настоящая проблема -**«model collapse»**:
когда нейросети обучаются на тексте, созданном другими нейросетями.
Это как ксерить ксерокопию - каждое поколение теряет детали и оригинальные идеи.
Мир превращается в поток однообразного, усреднённого контента.
ИИ сегодня создаёт “цифровую кашу”, а завтра будет учиться уже на ней. И каждый новый виток делает интернет чуть глупее.
#AI #Oxford #ModelCollapse #Internet #AIGeneratedContent #LLM #AIEthics #DigitalDecay
Исследователи из Оксфорда выяснили: интернет больше не тот, что раньше:
- В 2020 году ИИ создавал всего 5% контента,
- В 2025 - уже 48%, а к следующему году прогнозируют более 90%.
ИИ-текст стоит очень дешево, человеческий труд - от $10 до $100 за статью.
Рынок выбрал скорость и дешевизну.
Но настоящая проблема -**«model collapse»**:
когда нейросети обучаются на тексте, созданном другими нейросетями.
Это как ксерить ксерокопию - каждое поколение теряет детали и оригинальные идеи.
Мир превращается в поток однообразного, усреднённого контента.
ИИ сегодня создаёт “цифровую кашу”, а завтра будет учиться уже на ней. И каждый новый виток делает интернет чуть глупее.
#AI #Oxford #ModelCollapse #Internet #AIGeneratedContent #LLM #AIEthics #DigitalDecay
🔥 10 Python-библиотек, которые должен знать каждый разработчик LLM и GenAI
1️⃣ [LangChain](https://www.langchain.com/)
Фреймворк для создания LLM-приложений, агентов и инструментов.
Позволяет соединять языковые модели с базами данных, API и внешними сервисами.
Идеален для построения RAG-систем, чат-ботов и аналитических ассистентов.
2️⃣ [LangGraph](https://github.com/langchain-ai/langgraph)
Надстройка над LangChain для создания сложных многоагентных систем.
Поддерживает условную логику, ветвления и сохранение состояния.
Используется для разработки автономных агентов, которые сотрудничают и планируют задачи.
3️⃣ [Docling](https://github.com/DS4SD/docling)
Инструмент для анализа и извлечения информации из документов.
Объединяет LLM, LangChain и RAG-подход для “умного” чтения PDF, таблиц и сканов.
Подходит для систем документооборота, юридических и научных данных.
4️⃣ [OpenAI Python SDK](https://github.com/openai/openai-python)
Официальная библиотека для работы с моделями GPT-4o, DALL-E, Whisper и другими API OpenAI.
Позволяет вызывать модели, генерировать текст, изображения и транскрибировать аудио в несколько строк кода.
Главный инструмент для интеграции мощных моделей в свои Python-приложения.
5️⃣ [Markitdown (Microsoft)](https://github.com/microsoft/markitdown)
Библиотека от Microsoft для создания интерфейсов LLM-приложений с использованием Markdown.
Позволяет описывать UI и рабочие процессы прямо в тексте — быстро, удобно и без JavaScript.
Полезна для автоматизации LLM-воркфлоу и простых чат-интерфейсов.
6️⃣ [Streamlit](https://streamlit.io/)
Фреймворк для построения интерактивных AI-дашбордов и веб-приложений.
Позволяет визуализировать результаты модели, строить формы ввода, графики и интерактивные элементы.
Отличный выбор для быстрой демонстрации или внутреннего прототипа GenAI-проекта.
7️⃣ [FastAPI](https://fastapi.tiangolo.com/)
Высокопроизводительный фреймворк для создания REST и WebSocket API.
Идеален для деплоя ML и LLM моделей в продакшене.
Быстрый, типизированный и легко масштабируемый — стандарт де-факто в AI-бэкендах.
8️⃣ [Faiss](https://github.com/facebookresearch/faiss)
Библиотека от Meta для векторного поиска и кластеризации эмбеддингов.
Молниеносно ищет похожие тексты, изображения или документы в огромных наборах данных.
Необходима в RAG-системах, рекомендациях и семантическом поиске.
9️⃣ [SentenceTransformers](https://www.sbert.net/)
Набор моделей для генерации эмбеддингов предложений, текстов и документов.
Даёт качественные векторные представления для поиска, кластеризации и анализа смысловой близости.
Отлично работает вместе с Faiss и LangChain.
🔟 [MLflow](https://mlflow.org/)
Инструмент для трекинга экспериментов, управления моделями и деплоя ML-проектов.
Позволяет отслеживать метрики, сравнивать версии и хранить модели в централизованном реестре.
Незаменим при построении воспроизводимого и управляемого MLOps-процесса.
⚙️ Эти библиотеки формируют единый стек для создания LLM-агентов, RAG-систем, аналитических ассистентов и AI-сервисов — от эксперимента до продакшена.
1️⃣ [LangChain](https://www.langchain.com/)
Фреймворк для создания LLM-приложений, агентов и инструментов.
Позволяет соединять языковые модели с базами данных, API и внешними сервисами.
Идеален для построения RAG-систем, чат-ботов и аналитических ассистентов.
2️⃣ [LangGraph](https://github.com/langchain-ai/langgraph)
Надстройка над LangChain для создания сложных многоагентных систем.
Поддерживает условную логику, ветвления и сохранение состояния.
Используется для разработки автономных агентов, которые сотрудничают и планируют задачи.
3️⃣ [Docling](https://github.com/DS4SD/docling)
Инструмент для анализа и извлечения информации из документов.
Объединяет LLM, LangChain и RAG-подход для “умного” чтения PDF, таблиц и сканов.
Подходит для систем документооборота, юридических и научных данных.
4️⃣ [OpenAI Python SDK](https://github.com/openai/openai-python)
Официальная библиотека для работы с моделями GPT-4o, DALL-E, Whisper и другими API OpenAI.
Позволяет вызывать модели, генерировать текст, изображения и транскрибировать аудио в несколько строк кода.
Главный инструмент для интеграции мощных моделей в свои Python-приложения.
5️⃣ [Markitdown (Microsoft)](https://github.com/microsoft/markitdown)
Библиотека от Microsoft для создания интерфейсов LLM-приложений с использованием Markdown.
Позволяет описывать UI и рабочие процессы прямо в тексте — быстро, удобно и без JavaScript.
Полезна для автоматизации LLM-воркфлоу и простых чат-интерфейсов.
6️⃣ [Streamlit](https://streamlit.io/)
Фреймворк для построения интерактивных AI-дашбордов и веб-приложений.
Позволяет визуализировать результаты модели, строить формы ввода, графики и интерактивные элементы.
Отличный выбор для быстрой демонстрации или внутреннего прототипа GenAI-проекта.
7️⃣ [FastAPI](https://fastapi.tiangolo.com/)
Высокопроизводительный фреймворк для создания REST и WebSocket API.
Идеален для деплоя ML и LLM моделей в продакшене.
Быстрый, типизированный и легко масштабируемый — стандарт де-факто в AI-бэкендах.
8️⃣ [Faiss](https://github.com/facebookresearch/faiss)
Библиотека от Meta для векторного поиска и кластеризации эмбеддингов.
Молниеносно ищет похожие тексты, изображения или документы в огромных наборах данных.
Необходима в RAG-системах, рекомендациях и семантическом поиске.
9️⃣ [SentenceTransformers](https://www.sbert.net/)
Набор моделей для генерации эмбеддингов предложений, текстов и документов.
Даёт качественные векторные представления для поиска, кластеризации и анализа смысловой близости.
Отлично работает вместе с Faiss и LangChain.
🔟 [MLflow](https://mlflow.org/)
Инструмент для трекинга экспериментов, управления моделями и деплоя ML-проектов.
Позволяет отслеживать метрики, сравнивать версии и хранить модели в централизованном реестре.
Незаменим при построении воспроизводимого и управляемого MLOps-процесса.
⚙️ Эти библиотеки формируют единый стек для создания LLM-агентов, RAG-систем, аналитических ассистентов и AI-сервисов — от эксперимента до продакшена.
This media is not supported in your browser
VIEW IN TELEGRAM
Один One Day Offer вам или целых три — всем? 😉
25 октября Сбер проведёт сразу три экспресс-отбора кандидатов в две команды: GigaData и Kandinsky. Чем вам предстоит заниматься 👇
✔️ Развивать GigaData — внутреннюю платформу Сбера, которая обрабатывает петабайты данных и миллиарды запросов в сутки. One Day Offer для Python‑разработчиков.
✔️ Работать над Kandinsky — обучать большие модели с нуля, собирать и подготавливать данные, исследовать самые эффективные методы дообучения моделей.
— One Day Offer для Machine Learning Engineers с опытом в Deep Learning и компьютерном зрении (CV).
— One Day Offer для Research и Deep Learning Engineers.
Выбирайте то, что больше подходит под ваши навыки, и регистрируйтесь на One Day Offer!
25 октября Сбер проведёт сразу три экспресс-отбора кандидатов в две команды: GigaData и Kandinsky. Чем вам предстоит заниматься 👇
✔️ Развивать GigaData — внутреннюю платформу Сбера, которая обрабатывает петабайты данных и миллиарды запросов в сутки. One Day Offer для Python‑разработчиков.
✔️ Работать над Kandinsky — обучать большие модели с нуля, собирать и подготавливать данные, исследовать самые эффективные методы дообучения моделей.
— One Day Offer для Machine Learning Engineers с опытом в Deep Learning и компьютерном зрении (CV).
— One Day Offer для Research и Deep Learning Engineers.
Выбирайте то, что больше подходит под ваши навыки, и регистрируйтесь на One Day Offer!
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Всего через два дня после новости от Google - ещё один крупный квантовый прорыв.
IBM заявила, что один из её ключевых алгоритмов квантовой коррекции ошибок теперь способен работать в реальном времени на FPGA-чипах AMD, без использования экзотического оборудования.
Это делает квантовые вычисления быстрее, дешевле и ближе к практическому применению, чем ожидалось.
Алгоритм, который отслеживает и исправляет ошибки кубитов «на лету»,показал производительность в 10 раз выше необходимой, что стало важным шагом к созданию квантового компьютера Starling, запланированного на 2029 год.
Теперь IBM утверждает, что проект идёт на год впереди графика.
Исследовательская статья выйдет в понедельник.
Темп развития квантовых технологий заметно ускоряется.
reuters
Через два дня после запуска OpenAI Atlas Microsoft представили обновлённый браузер Edge с новым режимом Copilot Mode. Это полноценный AI-бразуер, который понимает контекст вкладок, выполняет действия и способен продолжать проекты, используя историю пользователя.
Функция Actions позволяет голосом или через чат открывать страницы, находить нужную информацию, отписываться от рассылок и даже бронировать рестораны. Система Journeys группирует прошлую активность по темам и помогает вернуться к незавершённым задачам, предлагая логичные следующие шаги. Включение Page Context даёт Copilot доступ к истории для более точных и персонализированных ответов, однако это остаётся опциональной функцией, которую можно отключить в любой момент.
Edge также получил встроенный AI-защитник от фейковых всплывающих окон, менеджер паролей с проверкой на утечки.
Браузер уже доступен в странах, где работает Copilot, на Windows и macOS.
Microsoft
Google представила фреймворк Geospatial Reasoning на базе Gemini, который объединяет предиктивные модели и данные в единую систему анализа Земли.
Теперь ИИ способен рассуждать о реальных процессах, например, предсказывать землетрясения, оценивать риски и предлагать план эвакуации.
Система уже применяется в ВОЗ (WHO AFRO) для прогнозов вспышек холеры и у McGill & Partners для расчёта ущерба после ураганов.
Google превращает Google Earth из карты в разумный аналитический инструмент планеты.
Мета-обучатель наблюдал за множеством агентов в разных средах и вывел универсальное правило обновления, которое улучшает поведение моделей без ручной настройки.
В итоге DiscoRL победил лучшие алгоритмы на Atari 57 и успешно перенёс этот навык на новые задачи.
nature
Hugging Face открыла OpenEnv -платформуа где можно собирать, обучать и масштабировать агентов под ваши задачи.
Внутри уже есть всё: инструменты, плагины, API и поддержка обучения с подкреплением - без сторонних библиотек.
OpenEnv позволяет создавать системы, где агенты взаимодействуют, распределяют задачи и выполняют их самостоятельно.
Платформа полностью открыта и готова к использованию без ограничений.
HF
На криптобенчмарке AlphaArena модели ИИ торгуют по $10 000 на площадке Hyperliquid, чтобы проверить качество торговых стратегий.
После старта, где лидировала DeepSeek V3.1, а GPT-5 показывала убыток около −39 %, Qwen3-Max обошла всех и заняла первое место.
Все участники - Qwen3-Max, DeepSeek V3.1, Claude 4.5 Sonnet, Gemini 2.5 Pro, Grok 4 и GPT-5 — торгуют в одинаковых условиях без приватных данных, что делает тест прозрачным.
На Polymarket оценивают шансы Qwen3-Max удержать лидерство в 45 %.
Организаторы планируют расширить эксперимент на акции и другие активы и запустить инвестплатформу для AI-агентов.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
