Warning: mkdir(): No space left on device in /var/www/tgoop/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/nn_for_science/-2554-2555-): Failed to open stream: No such file or directory in /var/www/tgoop/post.php on line 50
AI для Всех@nn_for_science P.2555
NN_FOR_SCIENCE Telegram 2555
NanoBanana for Geoscience

Вчера гулял по городу и пришла в голову идея: можно ли извлечь что-нибудь научно полезное из image-to-image моделей типа NanoBanana. Оказалось что очень даже.

Дал ей zero-shot промпт построить heatmap of grass damage (насколько сильно вытоптана трава в парке) и модель справилась на отлично!

Прикладываю сам промпт (навайбенный с GPT-5):

Grass Damage Heatmap — Overlay Only

Goal
Return the original aerial photo with a high-contrast damage heatmap drawn only on grass. No side-by-side, no crops, no extra files.

Input
/mnt/data/333064BC-C638-4C4E-A255-DA277B7CD2AC.jpeg

1) Preprocess (robust color)
• Gray-world white balance and local illumination normalization (shadow-robust).
• Bilateral filter to reduce noise while preserving edges.

2) Grass segmentation (tighter)
• Use RGB vegetation indices to drive the mask:
ExG = 2G − R − B, VARI = (G − R) / (G + R − B + 1e-6).
Keep pixels with (ExG > p60_exg OR VARI > p60_vari) AND HSV hue in [70°,150°] OR low-chroma yellow/olive under shadow normalization.
• Explicitly exclude: tree canopies + shadows, bare soil/paths, playgrounds, buildings/roads/cars.
• Morphology: close→open to fill small holes; remove speckles < 0.5 m².

3) Damage score (shadow-robust, multi-cue)

damage_raw = w1*(1 - norm(VARi))
+ w2*yellow_brownness // hue shift 15°–70°, low S
+ w3*thin/patchy texture // low local NDVI proxy & high LBP contrast
+ w4*exposed-soil likelihood

Use w1=0.4, w2=0.3, w3=0.2, w4=0.1. Clamp to [0,1].
Distance-from-path prior: don’t boost 1–2 m fringe unless the damaged region extends ≥3 m into turf.

4) Adaptive contrast (per-lawn)
• Split grass into connected polygons (“lawns”).
• For each polygon, percentile scale p5→0, p95→1 (clip).
• Hide scores < 0.30.

5) Overlay style (make hotspots pop)
• Colormap (no green): purple → orange → yellow/white (plasma-like).
0.30–0.49 = purple, 0.50–0.74 = orange, ≥0.75 = yellow/white.
• Opacity on grass: 0.85.
• Non-grass context: grayscale at 40–45% brightness.
• Contours at 0.50 and 0.75 (white, 1–2 px).
• High-confidence “bald spots” (≥0.85 and area ≥ 3 m²): add thin black outline.

6) Legend (compact)
• “Grass damage (≥30%)” bar with ticks at 30/50/75/100; place top-right, non-occluding.

7) Output
• One PNG at native resolution: original image + overlay.



Ultra-short drop-in

“Overlay only. Segment grass via ExG/VARI + HSV; exclude trees/paths/buildings; shadow-robust. Score damage from (1−VARI), yellow/brownness, patchy texture, soil; apply path-fringe guard. Per-lawn percentile remap (p5→0, p95→1); hide <0.30. Draw purple→orange→yellow/white heatmap at 0.85 opacity on grass; rest grayscale 45%. Add white contours at 0.50/0.75 and black outlines for ≥0.85 ‘bald spots’. Return one PNG.”


Кидайте свои идеи в комментарии!
🔥22👍75😱4😐3



tgoop.com/nn_for_science/2555
Create:
Last Update:

NanoBanana for Geoscience

Вчера гулял по городу и пришла в голову идея: можно ли извлечь что-нибудь научно полезное из image-to-image моделей типа NanoBanana. Оказалось что очень даже.

Дал ей zero-shot промпт построить heatmap of grass damage (насколько сильно вытоптана трава в парке) и модель справилась на отлично!

Прикладываю сам промпт (навайбенный с GPT-5):

Grass Damage Heatmap — Overlay Only

Goal
Return the original aerial photo with a high-contrast damage heatmap drawn only on grass. No side-by-side, no crops, no extra files.

Input
/mnt/data/333064BC-C638-4C4E-A255-DA277B7CD2AC.jpeg

1) Preprocess (robust color)
• Gray-world white balance and local illumination normalization (shadow-robust).
• Bilateral filter to reduce noise while preserving edges.

2) Grass segmentation (tighter)
• Use RGB vegetation indices to drive the mask:
ExG = 2G − R − B, VARI = (G − R) / (G + R − B + 1e-6).
Keep pixels with (ExG > p60_exg OR VARI > p60_vari) AND HSV hue in [70°,150°] OR low-chroma yellow/olive under shadow normalization.
• Explicitly exclude: tree canopies + shadows, bare soil/paths, playgrounds, buildings/roads/cars.
• Morphology: close→open to fill small holes; remove speckles < 0.5 m².

3) Damage score (shadow-robust, multi-cue)

damage_raw = w1*(1 - norm(VARi))
+ w2*yellow_brownness // hue shift 15°–70°, low S
+ w3*thin/patchy texture // low local NDVI proxy & high LBP contrast
+ w4*exposed-soil likelihood

Use w1=0.4, w2=0.3, w3=0.2, w4=0.1. Clamp to [0,1].
Distance-from-path prior: don’t boost 1–2 m fringe unless the damaged region extends ≥3 m into turf.

4) Adaptive contrast (per-lawn)
• Split grass into connected polygons (“lawns”).
• For each polygon, percentile scale p5→0, p95→1 (clip).
• Hide scores < 0.30.

5) Overlay style (make hotspots pop)
• Colormap (no green): purple → orange → yellow/white (plasma-like).
0.30–0.49 = purple, 0.50–0.74 = orange, ≥0.75 = yellow/white.
• Opacity on grass: 0.85.
• Non-grass context: grayscale at 40–45% brightness.
• Contours at 0.50 and 0.75 (white, 1–2 px).
• High-confidence “bald spots” (≥0.85 and area ≥ 3 m²): add thin black outline.

6) Legend (compact)
• “Grass damage (≥30%)” bar with ticks at 30/50/75/100; place top-right, non-occluding.

7) Output
• One PNG at native resolution: original image + overlay.



Ultra-short drop-in

“Overlay only. Segment grass via ExG/VARI + HSV; exclude trees/paths/buildings; shadow-robust. Score damage from (1−VARI), yellow/brownness, patchy texture, soil; apply path-fringe guard. Per-lawn percentile remap (p5→0, p95→1); hide <0.30. Draw purple→orange→yellow/white heatmap at 0.85 opacity on grass; rest grayscale 45%. Add white contours at 0.50/0.75 and black outlines for ≥0.85 ‘bald spots’. Return one PNG.”


Кидайте свои идеи в комментарии!

BY AI для Всех





Share with your friend now:
tgoop.com/nn_for_science/2555

View MORE
Open in Telegram


Telegram News

Date: |

Select: Settings – Manage Channel – Administrators – Add administrator. From your list of subscribers, select the correct user. A new window will appear on the screen. Check the rights you’re willing to give to your administrator. The group’s featured image is of a Pepe frog yelling, often referred to as the “REEEEEEE” meme. Pepe the Frog was created back in 2005 by Matt Furie and has since become an internet symbol for meme culture and “degen” culture. Telegram offers a powerful toolset that allows businesses to create and manage channels, groups, and bots to broadcast messages, engage in conversations, and offer reliable customer support via bots. How to Create a Private or Public Channel on Telegram? Telegram has announced a number of measures aiming to tackle the spread of disinformation through its platform in Brazil. These features are part of an agreement between the platform and the country's authorities ahead of the elections in October.
from us


Telegram AI для Всех
FROM American