【立法會去留問題】To stay or not to stay, that is the question 🤔
究竟係 集體總辭 or 堅守立會戰線? Allow me to leave this as a open ended question for the reader ,但可以肯定㗎呢個係呢個進退兩難嘅決定
係英文我哋形容進退兩難嘅情況 ,可以用dilemma , eg: "It is a dilemma for us to make the decision between remaining in the illegitimate legislative council or to protest against the postponement of election by collective resignation."
或者我哋要形容內心嘅困惑,可以用 quandary , eg: "We stuck in a quandary when facing such question. " 😖
如果想用一啲allegorical 啲嘅表達方式,可以用 quagmire ,本解作泥潭,但都可以比喻成一啲sticky situation , eg: "Damn it ! They got us in a quagmire." 😵
如果想用得更加潮, 可以用catch-22 situation (用法同dilemma 一樣) , 但記住一定要跟埋situation,或者你可能覺得呢個唔係啲咩進退兩難嘅狀況 你都可以用 either-or situation , 形容你要喺兩個計劃之中揀其中一個🧐
#English
究竟係 集體總辭 or 堅守立會戰線? Allow me to leave this as a open ended question for the reader ,但可以肯定㗎呢個係呢個進退兩難嘅決定
係英文我哋形容進退兩難嘅情況 ,可以用dilemma , eg: "It is a dilemma for us to make the decision between remaining in the illegitimate legislative council or to protest against the postponement of election by collective resignation."
或者我哋要形容內心嘅困惑,可以用 quandary , eg: "We stuck in a quandary when facing such question. " 😖
如果想用一啲allegorical 啲嘅表達方式,可以用 quagmire ,本解作泥潭,但都可以比喻成一啲sticky situation , eg: "Damn it ! They got us in a quagmire." 😵
如果想用得更加潮, 可以用catch-22 situation (用法同dilemma 一樣) , 但記住一定要跟埋situation,或者你可能覺得呢個唔係啲咩進退兩難嘅狀況 你都可以用 either-or situation , 形容你要喺兩個計劃之中揀其中一個🧐
#English
適逢八月嘅完結,同大家回顧一下 羅馬帝國開國君主 Augustus 嘅金句 : " I found Rome a city of bricks and left it a city of marble. "
我就改一改變成 : " We found Hong Kong a city of cash and left it a city of ashes"
寧化飛灰 不作浮塵 🔥
#History
我就改一改變成 : " We found Hong Kong a city of cash and left it a city of ashes"
寧化飛灰 不作浮塵 🔥
#History
8⃣3⃣1⃣ 7⃣2⃣1⃣呢兩個numbers永遠烙印喺香港人心目中, 象徵著啲乜嘢 相信都唔使我多講, 但從數學嘅角度分析呢兩個數有代表啲咩呢 , 要analysis一個numerical value, 最直接嘅方法就係做prime factorization
Result : 831 = 3*277 , 721 = 7*103
( 記住呢4個數之後會用到)
原來發現呢兩個數字都係semiprime / biprime , 即係佢哋係由兩個 prime number組成嘅composite number , having no composite numbers as factors other than themselves .
Semiprime 有個幾得意嘅property :
For a squarefree semiprime n=pq(with p≠q) ,the value of Euler totient function φ(n) could be expressed as
φ(n)=(p-1)(q-1)
唔信可以囉 721 嚟做例子(leaving 831 as a practice for readers😉 )
φ(721)= 612
(103-1)(7-1)= 612
竟然係612咁邪🙀 , 淨係咁啱得咁橋? How about try this algorithm :
(277-103) ×7÷3 =406
因為發生喺中國 所以應該調轉讀 就係6月04日
暗示咗721同831兩場恐襲同六四大屠殺 本質上都係一樣 都係一場massacre !😡
[ 想知道乜嘢係 Euler totient function, 可以去友台 @DseAskMath 了解一下, 唔係呢度詳細講 因為最少人投票想聽嘅topic就係數學☹]
#Mathematics
Result : 831 = 3*277 , 721 = 7*103
( 記住呢4個數之後會用到)
原來發現呢兩個數字都係semiprime / biprime , 即係佢哋係由兩個 prime number組成嘅composite number , having no composite numbers as factors other than themselves .
Semiprime 有個幾得意嘅property :
For a squarefree semiprime n=pq(with p≠q) ,the value of Euler totient function φ(n) could be expressed as
φ(n)=(p-1)(q-1)
唔信可以囉 721 嚟做例子(leaving 831 as a practice for readers😉 )
φ(721)= 612
(103-1)(7-1)= 612
竟然係612咁邪🙀 , 淨係咁啱得咁橋? How about try this algorithm :
(277-103) ×7÷3 =406
因為發生喺中國 所以應該調轉讀 就係6月04日
暗示咗721同831兩場恐襲同六四大屠殺 本質上都係一樣 都係一場massacre !😡
[ 想知道乜嘢係 Euler totient function, 可以去友台 @DseAskMath 了解一下, 唔係呢度詳細講 因為最少人投票想聽嘅topic就係數學☹]
#Mathematics
三權分立(Tripartite System), 由著名法國🇫🇷啟蒙思想學家 孟德斯鳩(Montesquieu)提出, 喺佢嘅著作 The spirit of law (De l'esprit des loix) ,提倡將政治權力分割畀 legislatures (立法), executives (行政) , judiciary (司法) , 避免一個政府權力過度集中喺君主🤴或者小部分貴族👸身上
而家柒婆提及嘅三權分工係以國家機構嘅利益為優先, 三權都只不過係為國家打工👨🔧 , 多數只會出現喺獨裁政權統治下嘅國家 eg. Nazi Germany and China🇨🇳 , 簡單嚟講就系reassure 咗一國兩制既破滅 🤣
#Politic
而家柒婆提及嘅三權分工係以國家機構嘅利益為優先, 三權都只不過係為國家打工👨🔧 , 多數只會出現喺獨裁政權統治下嘅國家 eg. Nazi Germany and China🇨🇳 , 簡單嚟講就系reassure 咗一國兩制既破滅 🤣
#Politic
【⚠️美國選舉戰線要人🔈】
仲淨兩個月就係大選,Trump爺選情嚴峻 ,民調顯示 Trump 依然未有領先跡象 喺搖擺州份暫時仲係落後, Donald Trump 政府對中國幾强硬大家有目共睹👀, Biden有幾奶共大家心知肚明😵
雖然呢個選舉遠在天邊 但影響卻近在眼前, 邊一個當選都會 直接決定香港嚟緊呢四年嘅命運如何 ,所以懇請大家嚟緊呢兩個月抽一啲時間 幫拖Twitter 戰線, 末download Twitter嘅快啲download ,follow @realDonaldTrump , 幫手 like &retweet 佢嘅post ( 如果英文好嘅話可以喺comment下面 講啲打氣嘅說話) ,如果仲有時間嘅可以去 @Joebiden 嘅post 下面 comment 追擊佢🏹
#MAGA2020
仲淨兩個月就係大選,Trump爺選情嚴峻 ,民調顯示 Trump 依然未有領先跡象 喺搖擺州份暫時仲係落後, Donald Trump 政府對中國幾强硬大家有目共睹👀, Biden有幾奶共大家心知肚明😵
雖然呢個選舉遠在天邊 但影響卻近在眼前, 邊一個當選都會 直接決定香港嚟緊呢四年嘅命運如何 ,所以懇請大家嚟緊呢兩個月抽一啲時間 幫拖Twitter 戰線, 末download Twitter嘅快啲download ,follow @realDonaldTrump , 幫手 like &retweet 佢嘅post ( 如果英文好嘅話可以喺comment下面 講啲打氣嘅說話) ,如果仲有時間嘅可以去 @Joebiden 嘅post 下面 comment 追擊佢🏹
#MAGA2020
我知有人會期望我地學術台評論一下陳彥霖死因仲裁案 ,但監於 involve 太多forensic science / anatomy 嘅 professional knowledge ,我地團隊無人有相關嘅background ,所以今後對此類案件均不予置評,不便之處 敬請原諒🙇♂️
近日迪士尼上映一部具爭議性嘅電影 Mulan, 本台到之前提及過花木蘭好大可能係一個虛構嘅角色, 並冇reliable historical account, 但歷史長河滔滔 又點會缺女性披甲上陣嘅例子?🗡
今日同大家介紹 Joan of Arc (Jeanne d'Arc) , 🇫🇷法國民族女英雄, 活躍於英法百年戰爭, 喺13歲嘅時候 experienced a revelation👀 , 聲稱自己見到 vision of figure she identified as Saint Michael ,Saint Catherine and Saint Margaret, 指使佢帶兵收復當時由Englishmen 佔領的Français⚜ 失地
喺奧爾良之圍一役當中初露鋒芒,率領法軍突破英軍重圍,解Siege of Orléans , 英軍累積半年嘅勝勢被年僅17歲的Joan of Arc 僅用9天時間即徹底毀滅, 此役都係英法百年戰爭嘅重要轉淚點, 隨後名聲大噪, 因此獲得 The Maid of Orléans (La Pucelle d'Orléans) 嘅花名, 其後獲Charles VII 加冕 👸
之後launched The Loire Campaign, 將喺 Vallée de la Loire 地區嘅 English and Bulgarian troops 一併趕走 . Subsequently , Siege of Paris, Siege of Saint-Pierre-le-Moûtier and Siege of La Charité 都係以首席commander 之名出戰 ⚔
#History #Saint
今日同大家介紹 Joan of Arc (Jeanne d'Arc) , 🇫🇷法國民族女英雄, 活躍於英法百年戰爭, 喺13歲嘅時候 experienced a revelation👀 , 聲稱自己見到 vision of figure she identified as Saint Michael ,Saint Catherine and Saint Margaret, 指使佢帶兵收復當時由Englishmen 佔領的Français⚜ 失地
喺奧爾良之圍一役當中初露鋒芒,率領法軍突破英軍重圍,解Siege of Orléans , 英軍累積半年嘅勝勢被年僅17歲的Joan of Arc 僅用9天時間即徹底毀滅, 此役都係英法百年戰爭嘅重要轉淚點, 隨後名聲大噪, 因此獲得 The Maid of Orléans (La Pucelle d'Orléans) 嘅花名, 其後獲Charles VII 加冕 👸
之後launched The Loire Campaign, 將喺 Vallée de la Loire 地區嘅 English and Bulgarian troops 一併趕走 . Subsequently , Siege of Paris, Siege of Saint-Pierre-le-Moûtier and Siege of La Charité 都係以首席commander 之名出戰 ⚔
#History #Saint
但可惜勝利女神並冇一直對佢微笑, on 23 May 1430, she was captured at Compiègne by the Burgundian faction, 跟住轉交英國人手上, then put on trial of heresy, 因為heresy was a capital crime only for a repeat offense , 所以唯有告佢 repeat offense of "cross-dressing" , 但對於男扮女裝佢亦都有合理嘅答辯, 喺戰場披甲 is to offer protection, 係軍營著男裝 is to deter molestation, 喺監倉照帶甲 is to defense against rape , 但最終佢呢啲 permissible reasons for "crossing-dressing " were neglected, she was condemned and sentenced to die. 😿
年僅19歲嘅少女 就係咁樣被活活燒死(Execution by burning ), 25年之後一位教宗 再覆核呢個案件, 撤銷控告 宣佈她冇罪,and declared her a martyr , 三百幾年之後 拿破崙封佢為法國嘅national symbol .1909年獲Pope Pius X 祝福(Beatification), 之後1920年獲Pope Benedict XV 封聖(Canonization)👼
講咁多口水都係想話畀大家聽 比起呢位 heroine, Mulan可以返鄉下耕田, 亦都希望大家呢幾日多啲用呢個hashtag #BoycottMulan
年僅19歲嘅少女 就係咁樣被活活燒死(Execution by burning ), 25年之後一位教宗 再覆核呢個案件, 撤銷控告 宣佈她冇罪,and declared her a martyr , 三百幾年之後 拿破崙封佢為法國嘅national symbol .1909年獲Pope Pius X 祝福(Beatification), 之後1920年獲Pope Benedict XV 封聖(Canonization)👼
講咁多口水都係想話畀大家聽 比起呢位 heroine, Mulan可以返鄉下耕田, 亦都希望大家呢幾日多啲用呢個hashtag #BoycottMulan
你會如何「支持」 新上畫電影 Mulan ?
Anonymous Quiz
42%
買飛去大銀幕 食住爆谷睇
3%
Disney plus 畀30美金 搶先睇
1%
慳啲錢 等多一陣租DVD/ Blueray 睇
54%
將線上看盜版link share俾親戚朋友 開心share一齊睇
近日government offer嘅voluntary Covid-19 testing 進行得如火如荼 , 雖然唔係mandatory, 但喺政府大力promote加上係免費 令到唔少人「受惠」, 本台重申多次立場 極力反對大家做呢一個測試, 你唔會將你嘅三圍 或者碌鳩幾長隨便分享畀人 in the same way 你都唔應該透露自己嘅DNA , 因為that's your own privacy, 如果佢知道你dna,theoretically 佢就可以analyze 到你所有 inborn biological characteristics, 例如 眼球/頭髮顏色, 有冇耳珠 etc., 但無法判斷你嘅後天develop嘅身體特徵 eg. height,weight etc.
#Biology
#Biology
我有23條chromosome 嚟自我阿爸,有23條嚟自我阿媽, 假如我雙親都做咗嗰個Covid-19 testing , 政府係咪就可以analyze到我成set DNA?
Anonymous Quiz
73%
是
27%
否
Erbfeindschaft
我有23條chromosome 嚟自我阿爸,有23條嚟自我阿媽, 假如我雙親都做咗嗰個Covid-19 testing , 政府係咪就可以analyze到我成set DNA?
【Full explanation】[好失望竟然有6成答錯]
首先你要知道你老豆啲精子唔系條條一樣,你老母的卵子都唔系粒粒一樣,appearance may be the same, but the genetic makeup is different ,sperm 同egg cells 我地統一叫做gametes 😚
Gamete cells 不同於 somatic cells ,former 衹有 23條chromosomes (so called haploid), latter 有46條 chromosomes ( so called diploid ) , haploid cell 嗰23 條 chromosomes 由 gametes producing cell 取材 , 每一set裏面二揀一 , 所以單計single individual 就可以產生到 2^(23) =8,388,608 不同基因嘅gametes , 計埋你另一個parent 我要將呢個數再二次方, 所以total 就會有 70,368,744,177,664 種combination, 呢一個過程我哋叫做 independent segregation 😄
加上仲有樣嘢叫做 Random fertilization, 即係冇人會知道究竟你阿爸係邊條精撞到你阿媽邊粒卵😳
最後仲有樣嘢叫做crossing over, after fertilization, zygote is formed 嗰陣 parental chromosome 有機會手拖手再交換咗一小節 chromatid (圖示), 從而產生咗新嘅 genetic makeup 🙂
呢三樣嘢都會contribute to genetic variations, 從而確保物種嘅演化, 如果呢題問題 答案真係True的話, 人類可能已經滅絕咗🤣🤣
#Biology
首先你要知道你老豆啲精子唔系條條一樣,你老母的卵子都唔系粒粒一樣,appearance may be the same, but the genetic makeup is different ,sperm 同egg cells 我地統一叫做gametes 😚
Gamete cells 不同於 somatic cells ,former 衹有 23條chromosomes (so called haploid), latter 有46條 chromosomes ( so called diploid ) , haploid cell 嗰23 條 chromosomes 由 gametes producing cell 取材 , 每一set裏面二揀一 , 所以單計single individual 就可以產生到 2^(23) =8,388,608 不同基因嘅gametes , 計埋你另一個parent 我要將呢個數再二次方, 所以total 就會有 70,368,744,177,664 種combination, 呢一個過程我哋叫做 independent segregation 😄
加上仲有樣嘢叫做 Random fertilization, 即係冇人會知道究竟你阿爸係邊條精撞到你阿媽邊粒卵😳
最後仲有樣嘢叫做crossing over, after fertilization, zygote is formed 嗰陣 parental chromosome 有機會手拖手再交換咗一小節 chromatid (圖示), 從而產生咗新嘅 genetic makeup 🙂
呢三樣嘢都會contribute to genetic variations, 從而確保物種嘅演化, 如果呢題問題 答案真係True的話, 人類可能已經滅絕咗🤣🤣
#Biology
早前啲新聞一直見到12呢個數字, 12 as a natural number 的確係幾有趣🤭
12 除咗係 one of the highly composite number (a positive integer with more divisors than any smaller positive integer has) 仲係一個 superior highly composite number ( a natural number which has more divisors than any other number scaled relative to some positive power of the number itself)
12竟然仲係最細嘅 abundant number (a number that is smaller than the sum of its proper divisors) , 1+2+3+4+6=16>12 🤔
12邊形我哋叫做 dodecagon, 12面體我地叫做Dodecahedron , 可能有人會問咁點解12月 唔叫做 Dodecember 🧐 , 而係用代表十嘅Dec 做prefix ? 好問題, 呢個問題留返下一個post 解答😎
可能就係因為12有趣嘅數學特性 喺天文宗教或者其他領域都經常見到佢嘅蹤影:
黃道十二宮, 十二生肖,Heracles twelve labors , 奧林匹克十二主神 ,耶穌嘅十二門徙 etc. ,12 is somehow a symbolism representing perfection, entirety, or cosmic order , 正因為咁可能佢哋先希望呢個數字能夠帶畀佢哋幸運,可惜事與願違。。。😭
#Mathematics
12 除咗係 one of the highly composite number (a positive integer with more divisors than any smaller positive integer has) 仲係一個 superior highly composite number ( a natural number which has more divisors than any other number scaled relative to some positive power of the number itself)
12竟然仲係最細嘅 abundant number (a number that is smaller than the sum of its proper divisors) , 1+2+3+4+6=16>12 🤔
12邊形我哋叫做 dodecagon, 12面體我地叫做Dodecahedron , 可能有人會問咁點解12月 唔叫做 Dodecember 🧐 , 而係用代表十嘅Dec 做prefix ? 好問題, 呢個問題留返下一個post 解答😎
可能就係因為12有趣嘅數學特性 喺天文宗教或者其他領域都經常見到佢嘅蹤影:
黃道十二宮, 十二生肖,Heracles twelve labors , 奧林匹克十二主神 ,耶穌嘅十二門徙 etc. ,12 is somehow a symbolism representing perfection, entirety, or cosmic order , 正因為咁可能佢哋先希望呢個數字能夠帶畀佢哋幸運,可惜事與願違。。。😭
#Mathematics
Erbfeindschaft
早前啲新聞一直見到12呢個數字, 12 as a natural number 的確係幾有趣🤭 12 除咗係 one of the highly composite number (a positive integer with more divisors than any smaller positive integer has) 仲係一個 superior highly composite number ( a natural number which has more divisors than any…
答返之前拋出嘅問題, In Latin "septem" 解作7⃣, "octo" 系8⃣ ,"novem" 系9⃣ , "decem" 🔟 , 咁點解 我哋而家用嘅Gregorian calendar , 八月之後嘅月份都退咗兩個數值嘅? 話說原來 ancient Roman calendar 係總共得十個月份, January (Ianuarius) 同 February (Februarius) , 係喺之後嘅 Julian calendar reformation 先加入😃
佢哋兩個新入嚟不但止仲要插隊🤭, 霸咗頭1⃣,2⃣位, 其他月份只好跟住褪位, 但因為啲月份已經用慣曬 所以冇跟返個context改名 , 一直保留到而家
#History
佢哋兩個新入嚟不但止仲要插隊🤭, 霸咗頭1⃣,2⃣位, 其他月份只好跟住褪位, 但因為啲月份已經用慣曬 所以冇跟返個context改名 , 一直保留到而家
#History
見到呢排好多人都講david, 我腦海即刻 浮現出嘅唔係lunch哥 亦都唔係碧咸, 而係耶穌嘅ancestor , 以色列🇮🇱君主大衛, 呢呢尊一數二最出名嘅雕像 executed by Michelangelo, 當初係Florence 公開嗰陣震驚整個藝術界🙀
#Art
#Art
講起大衛雕像 又點可以唔提另外兩位意大利大師嘅作品 , 不同與Michelangelo portrait 既自信嘅 備戰姿態, Bernini 捕捉咗 彈弓蓄勢待發嗰一刻嘅作戰狀態😼, Donatello 嘅銅像 描繪放鬆嘅勝利姿態 🥳
#Art
#Art
你最鍾意邊個 David statue ?
Anonymous Poll
61%
備戰狀態 (Michelangelo )
22%
作戰狀態 (Bernini )
17%
勝利姿態 (Donatello)