Книги C++ Бьёрн Страуструп.zip
180.8 MB
📚 Подборка книг по C++ от Бьёрне Страуструпа
📘 Язык программирования C++ [2013] Бьёрн Страуструп
📕 Программирование. Принципы и практика с использованием C++ (2е издание) [2016] Страуструп Б.
📗 A Tour of C++ Second Edition [2018] Bjarne Stroustrup
📔 Язык программирования С++. Краткий курс. 2-е издание [2019] Страуструп Бьярне
📙 Язык программирования С++. Специальное издание [2019] Страуструп Бьерн
📓 Дизайн и эволюция языка C++ [2007] Страуструп Б.
📒 Экскурсия по C++, 3-е издание [2023] Страуструп Бьярне
Книга написана Бьерном Страуструпом - автором языка программирования C++ - и является каноническим изложением возможностей этого языка. Помимо подробного описания собственно языка, на страницах книги вы найдете доказавшие свою эффективность подходы к решению разнообразных задач проектирования и программирования. Многочисленные примеры демонстрируют как хороший стиль программирования на С-совместимом ядре C++, так и современный объектно-ориентированный подход к созданию программных продуктов.
Книга адресована программистам, использующим в своей повседневной работе C++. Она также будет полезна преподавателям, студентам и всем, кто хочет ознакомиться с описанием языка «из первых рук». #cpp #cplusplus #programming #C #си #программирование #подборка_книг #разработка #архитектура
💡 Physics.Math.Code // @physics_lib
📘 Язык программирования C++ [2013] Бьёрн Страуструп
📕 Программирование. Принципы и практика с использованием C++ (2е издание) [2016] Страуструп Б.
📗 A Tour of C++ Second Edition [2018] Bjarne Stroustrup
📔 Язык программирования С++. Краткий курс. 2-е издание [2019] Страуструп Бьярне
📙 Язык программирования С++. Специальное издание [2019] Страуструп Бьерн
📓 Дизайн и эволюция языка C++ [2007] Страуструп Б.
📒 Экскурсия по C++, 3-е издание [2023] Страуструп Бьярне
Книга написана Бьерном Страуструпом - автором языка программирования C++ - и является каноническим изложением возможностей этого языка. Помимо подробного описания собственно языка, на страницах книги вы найдете доказавшие свою эффективность подходы к решению разнообразных задач проектирования и программирования. Многочисленные примеры демонстрируют как хороший стиль программирования на С-совместимом ядре C++, так и современный объектно-ориентированный подход к созданию программных продуктов.
Книга адресована программистам, использующим в своей повседневной работе C++. Она также будет полезна преподавателям, студентам и всем, кто хочет ознакомиться с описанием языка «из первых рук». #cpp #cplusplus #programming #C #си #программирование #подборка_книг #разработка #архитектура
💡 Physics.Math.Code // @physics_lib
1👍64😭33🔥19😍4❤3👨💻2🫡1
This media is not supported in your browser
VIEW IN TELEGRAM
🟨 Для нахождения центра тяжести плоской фигуры можно использовать следующие методы:
▪️ Способ симметрии. Если фигура имеет плоскость, ось или центр симметрии, то её центр тяжести лежит на этой плоскости, оси или совпадает с центром симметрии.
▪️ Способ разбиения. Сложную фигуру разбивают на отдельные части, у которых площади и координаты центров тяжести известны или достаточно просто вычисляются.
▪️ Метод отрицательных площадей. Его применяют для фигур с вырезами, если известно положение центра тяжести тела без учёта выреза и центра тяжести самого выреза. Площадь целой части считают положительной величиной, а площадь выреза — отрицательной.
▪️ Метод интегрирования. Его используют, если фигуру невозможно разбить на простые части. Тело разбивают на бесконечно малые объёмы, затем интегрированием вычисляют координаты.
▪️ Метод подвешивания. Этот экспериментальный метод применяют для тонких плоских тел. Фигуру поочередно подвешивают за две различные точки, прочерчивают направления линий подвеса, а центр тяжести находят как точку пересечения указанных линий.
#физика #математика #геометрия #топология #механика #задачи #олимпиады #разбор_задач
💡 Physics.Math.Code // @physics_lib
▪️ Способ симметрии. Если фигура имеет плоскость, ось или центр симметрии, то её центр тяжести лежит на этой плоскости, оси или совпадает с центром симметрии.
▪️ Способ разбиения. Сложную фигуру разбивают на отдельные части, у которых площади и координаты центров тяжести известны или достаточно просто вычисляются.
▪️ Метод отрицательных площадей. Его применяют для фигур с вырезами, если известно положение центра тяжести тела без учёта выреза и центра тяжести самого выреза. Площадь целой части считают положительной величиной, а площадь выреза — отрицательной.
▪️ Метод интегрирования. Его используют, если фигуру невозможно разбить на простые части. Тело разбивают на бесконечно малые объёмы, затем интегрированием вычисляют координаты.
▪️ Метод подвешивания. Этот экспериментальный метод применяют для тонких плоских тел. Фигуру поочередно подвешивают за две различные точки, прочерчивают направления линий подвеса, а центр тяжести находят как точку пересечения указанных линий.
#физика #математика #геометрия #топология #механика #задачи #олимпиады #разбор_задач
💡 Physics.Math.Code // @physics_lib
👍166🔥48❤13😱6👏4🤩1
This media is not supported in your browser
VIEW IN TELEGRAM
🪐 Космическое пространство ☄️
Космос (др.-греч. κόσμος — «упорядоченность», «порядок») — относительно пустые участки Вселенной, которые лежат вне границ атмосфер небесных тел. Космос не является абсолютно пустым пространством: в нём есть, хотя и с очень низкой плотностью, межзвёздное вещество (преимущественно ионы и атомы водорода), космические лучи и электромагнитное излучение, а также гипотетическая тёмная материя.
▪️ «Космос есть внутри нас, мы сделаны из звёздного вещества, мы — это способ, которым Космос познаёт себя» (Карл Саган).
▪️ «Космос — это всё, что есть, что когда-либо было и когда-нибудь будет. Одно созерцание Космоса потрясает: дрожь бежит по спине, перехватывает горло, и появляется чувство, слабое, как смутное воспоминание, будто падаешь с высоты. Мы сознаём, что прикасаемся к величайшей из тайн» (Карл Саган).
▪️ «Космос разумен. Нами распоряжается, над нами господствует космос» (Константин Циолковский).
▪️ «Космос располагает безграничным запасом времени, это не просто означает, что может произойти всё, что угодно. Это означает, что всё когда-нибудь действительно произойдёт» (Эрленд Лу).
#физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science
💡 Physics.Math.Code // @physics_lib
Космос (др.-греч. κόσμος — «упорядоченность», «порядок») — относительно пустые участки Вселенной, которые лежат вне границ атмосфер небесных тел. Космос не является абсолютно пустым пространством: в нём есть, хотя и с очень низкой плотностью, межзвёздное вещество (преимущественно ионы и атомы водорода), космические лучи и электромагнитное излучение, а также гипотетическая тёмная материя.
▪️ «Космос есть внутри нас, мы сделаны из звёздного вещества, мы — это способ, которым Космос познаёт себя» (Карл Саган).
▪️ «Космос — это всё, что есть, что когда-либо было и когда-нибудь будет. Одно созерцание Космоса потрясает: дрожь бежит по спине, перехватывает горло, и появляется чувство, слабое, как смутное воспоминание, будто падаешь с высоты. Мы сознаём, что прикасаемся к величайшей из тайн» (Карл Саган).
▪️ «Космос разумен. Нами распоряжается, над нами господствует космос» (Константин Циолковский).
▪️ «Космос располагает безграничным запасом времени, это не просто означает, что может произойти всё, что угодно. Это означает, что всё когда-нибудь действительно произойдёт» (Эрленд Лу).
#физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science
💡 Physics.Math.Code // @physics_lib
👍136🔥48❤33❤🔥7🤩6😍6😎6🤨3🆒1
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Наиболее часто первые исследования изохорного процесса связывают с Гийомом Амонтоном. В своей работе «Парижские мемуары» в 1702 году он описал поведение газа в фиксированном объёме внутри так называемого «воздушного термометра». Жидкость в нём находится в равновесии под воздействием давления газа в резервуаре и атмосферным давлением. При нагревании давление в резервуаре увеличивается, и жидкость вытесняется в выступающую трубку. Зависимость между температурой и давлением была установлена в виде:
p₁/p₂ = (1 + α⋅t₁) / (1 + α⋅t₂)
.В 1801 году Джон Дальтон в двух своих эссе опубликовал эксперимент, в котором установил, что все газы и пары, исследованные им при постоянном давлении, одинаково расширяются при изменении температуры, если начальная и конечная температура одинакова. Данный закон получил название закона Гей-Люссака, так как Гей-Люссак вскоре провёл самостоятельные эксперименты и подтвердил одинаковое расширение различных газов, причём получив практически тот же самый коэффициент, что и Дальтон. Впоследствии он же объединил свой закон с законом Бойля — Мариотта, что позволило описывать в том числе и изохорный процесс.
🔥Практическое применение: При идеальном цикле Отто, который приближённо воспроизведён в бензиновом двигателе внутреннего сгорания, такты 2—3 и 4—1 являются изохорными процессами. Работа, совершаемая на выходе двигателя, равна разности работ, которую произведёт газ над поршнем во время третьего такта (то есть рабочего хода), и работы, которую затрачивает поршень на сжатие газа во время второго такта. Так как в двигателе, работающем по циклу Отто используется система принудительного зажигания смеси, то происходит сжатие газа в 7—12 раз.
В цикле Стирлинга также присутствуют два изохорных такта. Для его осуществления в двигателе Стирлинга добавлен регенератор. Газ, проходя через наполнитель в одну сторону, отдаёт тепло от рабочего тела к регенератору, а при движении в другую сторону отдаёт его обратно рабочему телу. Идеальный цикл Стирлинга достигает обратимости и тех же величин КПД что и цикл Карно. Изохорный процесс — также процесс, протекающий в автоклавах и пьезометрах. #физика #термодинамика #опыты #мкт #теплота #нагрев #лекции #physics #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍73❤23🔥10🤯4⚡2🤩2
Media is too big
VIEW IN TELEGRAM
▪️ в круглодонной колбе;
▪️ в U-образной трубке
Конвекция (от лат. convectiō — «перенесение») — вид теплообмена, при котором внутренняя энергия передаётся струями и потоками самого вещества. Существует так называемая естественная конвекция, которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется снова и снова. При некоторых условиях процесс перемешивания самоорганизуется в структуру отдельных вихрей и получается более или менее правильная решётка из конвекционных ячеек.
Различают ламинарную и турбулентную конвекцию.
Естественной конвекции обязаны многие атмосферные явления, в том числе, образование облаков. Благодаря тому же явлению движутся тектонические плиты. Конвекция ответственна за появление гранул на Солнце.
При вынужденной (принудительной) конвекции перемещение вещества обусловлено действием внешних сил (насос, лопасти вентилятора и т. п.). Она применяется, когда естественная конвекция является недостаточно эффективной.
Конвекцией также называют перенос теплоты, массы или электрических зарядов движущейся средой.
#физика #термодинамика #опыты #мкт #теплота #нагрев #лекции #physics #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍46❤11🔥8🤩2
This media is not supported in your browser
VIEW IN TELEGRAM
Так как сила Архимеда обусловлена силой тяжести, то в невесомости она не действует.
В соответствии с законом Архимеда для выталкивающей силы выполняется: Fₐ = ρₑₙ·g·V
Выталкивающая или подъёмная сила по направлению противоположна силе тяжести, прикладывается к центру тяжести объёма, вытесняемого телом из жидкости или газа.
Если тело плавает (см. плавание тел) или равномерно движется вверх или вниз, то выталкивающая или подъёмная сила по модулю равна силе тяжести, действующей на вытесненный телом объём жидкости или газа.
На самом деле, Архимед проводил не совсем тот опыт, который везде рассказывают. Был другой эксперимент, подробнее в заметке ниже:
💧 Найти объем: простая геометрическая задача, в которой ошибается 50% людей
#гидростатика #опыты #физика #механика #physics #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍63❤26🔥8🌚3❤🔥1⚡1
📕 Решающие эксперименты в современной физике [1974] Дж. Тригг.
💾 Скачать книгу
Джордж Л. Тригг — известный американский учёный, профессор, редактор журнала «Физикал Ревью Леттерс» («The Physical Review Letters»). Автор книги «Решающие эксперименты в современной физике» (1974). Также Тригг написал книгу «Физика ХХ века: ключевые эксперименты» (1978), в которой рассказывает об истории многих важнейших экспериментальных открытий в физике XX века. Основная цель труда — показать решающую роль эксперимента в развитии физики и становлении её законов. #эксперименты #опыты #физика #наука #physics #science
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Джордж Л. Тригг — известный американский учёный, профессор, редактор журнала «Физикал Ревью Леттерс» («The Physical Review Letters»). Автор книги «Решающие эксперименты в современной физике» (1974). Также Тригг написал книгу «Физика ХХ века: ключевые эксперименты» (1978), в которой рассказывает об истории многих важнейших экспериментальных открытий в физике XX века. Основная цель труда — показать решающую роль эксперимента в развитии физики и становлении её законов. #эксперименты #опыты #физика #наука #physics #science
💡 Physics.Math.Code // @physics_lib
👍48🔥6❤4🤔3😍2
Решающие_эксперименты_в_современной_физике_1974_Дж_Тригг_.djvu
1.9 MB
📕 Решающие эксперименты в современной физике [1974] Дж. Тригг.
В книге в популярной форме, но достаточно строго описываются эксперименты, которые сыграли важнейшую роль в переходе от классических представлений к идеям современной физики и легли в основу квантовой механики и атомной теории.
Интересное изложение с большим количеством цитат из работ ученых, выполнявших описанные эксперименты, знакомит читателя с тем, какими сложными путями часто идет развитие научных представлений, и облегчает восприятие самих этих представлений.
Книга рассчитана на широкий круг читателей, интересующихся физикой и историей ее развития, в частности на студентов и школьников.
Развитие физики в первой половине двадцатого столетия характеризуется появлением двух принципиально новых направлений: теории относительности и квантовой теории. Что касается первой, то, как принято считать, ее основы были заложены еще в девятнадцатом веке, в эксперименте Майкельсона — Морли. Теория относительности по-существу целиком была создана Альбертом Эйнштейном. В этой монографии мы ее рассматривать не будем.
История квантовой теории значительно сложнее. По сути дела большая часть описываемых в этой книге экспериментов имеет непосредственное отношение именно к ней. На первый взгляд может показаться, что квантовая теория представляет собой теорию строения отдельных атомов и атомных структур. Но на самом деле ее значение гораздо шире, и ее возникновение связано не с атомной физикой, а с попыткой дать полное описание излучения из малого отверстия в стенке печи. Из соображений, о которых речь пойдет ниже, это излучение стало предметом обширных теоретических исследований, в результате которых был выведен ряд его общих свойств. Однако основная формула излучения базировалась на довольно сомнительных предположениях. В настоящей главе описывается первая экспериментальная работа, в которой эта формула подверглась достаточно строгой и всесторонней проверке. Оказалось, что предложенная формула несовершенна и для ее модификации необходимо ввести новую универсальную постоянную, впоследствии получившую название «квант действия».
#эксперименты #опыты #физика #наука #physics #science
💡 Physics.Math.Code // @physics_lib
В книге в популярной форме, но достаточно строго описываются эксперименты, которые сыграли важнейшую роль в переходе от классических представлений к идеям современной физики и легли в основу квантовой механики и атомной теории.
Интересное изложение с большим количеством цитат из работ ученых, выполнявших описанные эксперименты, знакомит читателя с тем, какими сложными путями часто идет развитие научных представлений, и облегчает восприятие самих этих представлений.
Книга рассчитана на широкий круг читателей, интересующихся физикой и историей ее развития, в частности на студентов и школьников.
Развитие физики в первой половине двадцатого столетия характеризуется появлением двух принципиально новых направлений: теории относительности и квантовой теории. Что касается первой, то, как принято считать, ее основы были заложены еще в девятнадцатом веке, в эксперименте Майкельсона — Морли. Теория относительности по-существу целиком была создана Альбертом Эйнштейном. В этой монографии мы ее рассматривать не будем.
История квантовой теории значительно сложнее. По сути дела большая часть описываемых в этой книге экспериментов имеет непосредственное отношение именно к ней. На первый взгляд может показаться, что квантовая теория представляет собой теорию строения отдельных атомов и атомных структур. Но на самом деле ее значение гораздо шире, и ее возникновение связано не с атомной физикой, а с попыткой дать полное описание излучения из малого отверстия в стенке печи. Из соображений, о которых речь пойдет ниже, это излучение стало предметом обширных теоретических исследований, в результате которых был выведен ряд его общих свойств. Однако основная формула излучения базировалась на довольно сомнительных предположениях. В настоящей главе описывается первая экспериментальная работа, в которой эта формула подверглась достаточно строгой и всесторонней проверке. Оказалось, что предложенная формула несовершенна и для ее модификации необходимо ввести новую универсальную постоянную, впоследствии получившую название «квант действия».
Глава 1. ВВЕДЕНИЕ.
Глава 2. ВОЗНИКНОВЕНИЕ ПРЕДСТАВЛЕНИЯ О КВАНТЕ.
Глава 3. ПРЕВРАЩЕНИЕ ЭЛЕМЕНТОВ.
Глава 4. СУЩЕСТВОВАНИЕ АТОМОВ.
Глава 5. АТОМНОЕ ЯДРО.
Глава 6. СТОЛКНОВЕНИЯ ЭЛЕКТРОНОВ С АТОМАМИ.
Глава 7. ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ.
Глава 8. ПРОСТРАНСТВЕННАЯ ОРИЕНТАЦИЯ АТОМНЫХ МАГНИТНЫХ МОМЕНТОВ.
Глава 9. КОРПУСКУЛЯРНЫЕ СВОЙСТВА СВЕТА.
Глава 10. ВОЛНОВЫЕ СВОЙСТВА ВЕЩЕСТВА.
#эксперименты #опыты #физика #наука #physics #science
💡 Physics.Math.Code // @physics_lib
👍69🔥16❤5🤯3⚡2😱2
Подборка популярных каналов по информационной безопасности и этичному хакингу:
🔐 infosec — ламповое сообщество, которое публикует редкую литературу, курсы и полезный контент для ИБ специалистов любого уровня и направления.
😈 Social Engineering — самый крупный ресурс в Telegram, посвященный этичному Хакингу, OSINT и социальной инженерии.
💬 Вакансии в ИБ — актуальные предложения от самых крупных работодателей и лидеров рынка в сфере информационной безопасности.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13✍5❤2❤🔥1🔥1
На примере ракеты принцип реактивного движения можно объяснить так: в начальный момент времени ракета покоится, то есть её полный импульс равен нулю. Когда из ракеты начнёт выбрасываться с некоторой скоростью часть её массы (газ), появляется реактивная сила. Изменение импульса газа создаёт реактивную силу, и ракета получает скорость, направленную в противоположную сторону.
Главная особенность реактивного движения в том, что для осуществления реактивного движения не требуется взаимодействия тела с окружающей средой.
Реактивное движение создается некоторыми двигателями, работающими на реактивной тяге, или животными, когда тяга создается за счет быстрого движения струи жидкости в соответствии с законами движения Ньютона. Это наиболее эффективно, когда число Рейнольдса высокое, то есть движущийся объект имеет относительно большие размеры и движется в среде с низкой вязкостью.
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍55🔥17❤12
Media is too big
VIEW IN TELEGRAM
Интересно было бы прикрепить на два шарика по светодиоду и, выключив свет, записать видео на длинной выдержке, чтобы получить форму траекторий движения, как мы видели в этом опыте 🔴Двойной маятник или в этой модели ⚙️ Анимация движения двойного маятника
#кинематика #эксперименты #опыты #физика #механика #physics #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍65🔥18❤12🤩4
📐 Геометрическая задача из Турции для разминки наших подписчиков. Всё, что дано, — есть на рисунке. Определите угол ∠A — ?
#разборы_задач #олимпиады #математика #геометрия #math #geometry
✏️ Подсказка здесь
💡 Physics.Math.Code // @physics_lib
#разборы_задач #олимпиады #математика #геометрия #math #geometry
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41❤12🤯5🔥2🤷♂1😱1