Telegram Web
Media is too big
VIEW IN TELEGRAM
⚖️ Кинетический хаос «Физический маятник»: две люцитовые сферы свободно вращаются вокруг трех перпендикулярных осей в этой винтажной кинетической скульптуре Джона Андерсона 1974 года. Интересной особенностью дизайна является то, что одна горизонтальная ось смещена относительно двух других, что приводит к более сложным движениям. Хаотическое движение характеризуется чрезвычайной чувствительностью к начальным условиям, крошечные различия в том, как система запускается, приводят к кардинально разным результатам каждый раз, когда массы приводятся в движение.

Интересно было бы прикрепить на два шарика по светодиоду и, выключив свет, записать видео на длинной выдержке, чтобы получить форму траекторий движения, как мы видели в этом опыте 🔴Двойной маятник или в этой модели ⚙️ Анимация движения двойного маятника

#кинематика #эксперименты #опыты #физика #механика #physics #science

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍65🔥1812🤩4
📐 Геометрическая задача из Турции для разминки наших подписчиков. Всё, что дано, — есть на рисунке. Определите угол ∠A — ?

#разборы_задач #олимпиады #математика #геометрия #math #geometry

✏️ Подсказка здесь

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4112🤯5🔥2🤷‍♂1😱1
This media is not supported in your browser
VIEW IN TELEGRAM
〰️ Физика в опытах: Искривление луча в неоднородной среде 🔴

Искривление луча в неоднородной среде связано с изменением показателя преломления среды. Например, если среда состоит из плоскопараллельных слоёв с показателем преломления, меняющимся скачкообразно от слоя к слою, то световой луч, преломляясь на границе слоёв, примет форму ломаной линии. Если неограниченно увеличивать число слоёв, устремляя к нулю их толщины и скачки показателей преломления, то в пределе показатель преломления среды станет меняться непрерывно, а луч перейдёт в кривую с непрерывно изменяющейся касательной. Искривление луча в неоднородной среде происходит в сторону увеличения показателя преломления.

💧 Полезно понаблюдать на опыте, как распространяется узкий световой пучок в оптически неоднородной среде. Рассмотрим жидкую среду. Чтобы поставить опыт, надо, во-первых, приготовить такую среду, а во-вторых, позаботиться о том, чтобы световой пучок был хорошо виден в ней. Наполним аквариум прямоугольной формы или специально изготовленную плоскопараллельную кювету водой примерно до половины. Затем через воронку со шлангом, конец которого надо опустить до самого дна кюветы, будем медленно наливать насыщенный раствор поваренной соли (300 г соли на литр воды). Раствор соли будет растекаться по дну кюветы и будет постепенно вытеснять вверх воду. В итоге нижняя половина кюветы окажется заполненной более плотной жидкостью (раствором соли), а верхняя - менее плотной (водой). Вследствие взаимной диффузии между жидкостями через некоторое время образуется переходный слой с плавно изменяющейся в вертикальном направлении плотностью, а значит, и показателем преломления. Он будет постепенно возрастать в направлении сверху вниз. Чтобы световой луч был хорошо виден в жидкости, можно предварительно добавить в чистую воду и в солевой раствор щепотку хвойного концентрата, продающегося в аптеке, слабый раствор которого обладает способностью светиться зеленым светом (люминесцировать) под действием обычного (белого) света.

В оптически неоднородной среде световой луч изгибается так, что его траектория всегда оказывается обращена выпуклостью в сторону уменьшения показателя преломления среды. Насколько резко будет искривляться световой луч в среде с непрерывно изменяющимся показателем преломления? Это зависит от того, насколько быстро изменяется показатель преломления при переходе от одних точек среды к другим.

Гервидс Валериан Иванович — доцент кафедры общей физики МИФИ, кандидат физико-математических наук
#физика #мкт #оптика #космос #optics #thermodynamics #термодинамика #physics #science

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍69106🤩3❤‍🔥2🔥2👏2🤝1
#️⃣ Второй замечательный предел:
lim (1 + 1/n)ⁿ = e при n →
📝

e ~ 2.718281828... — иррациональное число.

Когда выражение под знаком предела находится в степени – это первый признак того, что нужно попытаться применить второй замечательный предел.

Полезная статья со множеством решенных примеров, которые я собирал из разных контрольных и экзаменов:
📝 Математический анализ. Учимся решать пределы

#математика #анализ #math #calculus #математический_анализ #fun #пределы #наука #science

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍98🔥239😎85🌚5❤‍🔥2🤔2🗿1
This media is not supported in your browser
VIEW IN TELEGRAM
⚙️ Цепной механизм с реверсивным движением

Давайте обсудим:
1. Будет ли в реальности работать данная модель под нагрузкой ?
2. Если будет работать, то в какой области можно применить данный механизм?

#геометрия #моделирование #механика #gif #physics #передачи #кинематика #наука #science

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍105🔥21🤔11❤‍🔥7😱32
📚 Основы математического анализа [2 части] [1998 - 2005] Ильин В.А., Позняк Э.Г.

Издательство: Наука. Физматлит


💾 Скачать книги

👩‍💻 Человек, не знающий математики, не способен ни к каким другим наукам. Более того, он даже не способен оценить уровень своего невежества, а потому не ищет от него лекарства. — Роджер Бэкон

Для студентов высших учебных заведений, обучающихся по специальностям «Физика» и «Прикладная математика».

#math #наука #science #высшая_математика #математический_анализ #дифференциальное_исчисление #математика #подборка_книг

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5719🔥8🤯5💯2❤‍🔥1
Основы_математического_анализа_Ильин,_Позняк.zip
40.7 MB
📚 Основы математического анализа [2 части] [1998 - 2005] Ильин В.А., Позняк Э.Г.
Издательство: Наука. Физматлит


Учебник создан на базе лекций, читавшихся авторами в течение ряда лет на физическом факультете и на факультете вычислительной математики и кибернетики Московского государственного университета.
Книги включают в себя теорию вещественных чисел, теорию пределов и непрерывности функций, дифференциальное и интегральное исчисление функций одной переменной, теорию числовых рядов, дифференциальное исчисление функций многих переменных, теорию функциональных последовательностей и рядов, кратных (в том числе несобственных), криволинейных и поверхностных интегралов, интегралов, зависящих от параметров, теорию рядов и интегралов Фурье.
При написании этой книги авторы использовали некоторые методические приемы из курса лекций Н. В. Ефимова и из известных книг Э. Гурса, Ш. Ж. Валле-Пуссена и Ф. Франклина.
Для студентов высших учебных заведений, обучающихся по специальностям «Физика» и «Прикладная математика».
Один из выпусков «Курса высшей математики и математической физики» под редакцией А.Н.Тихонова, В.А.Ильина, А.Г.Свешникова. Учебник создан на базе лекций, читавшихся авторами в течение ряда лет на физическом факультете и факультете вычислительной математики и кибернетики Московского государственного университета. Книга включает теорию функциональных последовательностей и рядов, кратных (в том числе несобственных), криволинейных и поверхностных интегралов, интегралов, зависящих от параметров, теорию рядов и интегралов Фурье. Для студентов высших учебных заведений, обучающихся по специальностям «Физика» и «Прикладная математика».

#math #наука #science #высшая_математика #математический_анализ #дифференциальное_исчисление #математика #подборка_книг

💡 Physics.Math.Code // @physics_lib
🔥46👍398👏2
☄️ Видманштеттеновы фигуры 🪐

Видманштеттенова структура — разновидность металлографической структуры сплавов, отличающаяся геометрически правильным расположением элементов структуры в виде пластин или игл внутри составляющих сплав кристаллических зёрен.

Присутствие Видманштеттеновой структуры является индикатором медленного охлаждения материала в космической среде, что позволяет идентифицировать метеориты среди других типов железа и сплавов.

Также термин «Видманштеттенова структура» применяется для характеристики структуры сильно перегретой или литой стали, в которой выделяющийся из аустенита избыточный феррит располагается вдоль октаэдрических плоскостей кристаллов аустенита. В настоящее время употребляется при описании других геометрически упорядоченных структур в сплавах.

#физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science

💡 Physics.Math.Code // @physics_lib
👍55🔥2214🤯3
〰️ Акустическая левитация — это метод взвешивания вещества в воздухе против силы тяжести с использованием давления акустического излучения от звуковых волн высокой интенсивности. Метод работает по тем же принципам, что и акустический пинцет, используя силы акустического излучения. Однако акустические пинцеты, как правило, представляют собой устройства небольшого размера, которые работают в текучей среде и в меньшей степени подвержены влиянию силы тяжести, тогда как акустическая левитация в первую очередь связана с преодолением силы тяжести.

Обычно используются звуковые волны на ультразвуковых частотах, таким образом, не создавая звука, слышимого людям. В первую очередь это связано с высокой интенсивностью звука, необходимой для противодействия силе тяжести. Однако были случаи использования слышимых частот.

Существуют различные методы генерации звука, но наиболее распространенным является использование пьезоэлектрических преобразователей, которые могут эффективно генерировать сигналы высокой амплитуды на желаемых частотах. Этим методом сложнее управлять, чем другими, такими как электромагнитная левитация, но его преимущество заключается в возможности левитации непроводящих материалов.

Хотя изначально акустическая левитация была статичной, она прошла путь от неподвижной левитации до динамического управления парящими объектами - способности, полезной в фармацевтической и электронной промышленности. Это динамическое управление было впервые реализовано с помощью прототипа с массивом квадратных акустических излучателей, похожих на шахматную доску, которые перемещают объект с одного квадрата на другой, медленно снижая интенсивность звука, излучаемого одним квадратом, при одновременном увеличении интенсивности звука из другого, позволяя объекту перемещаться практически вертикально вверх. Совсем недавно разработка плат преобразователей с фазированной антенной решеткой позволила более произвольно управлять несколькими частицами и каплями одновременно. Недавние достижения также привели к значительному снижению цены на эту технологию. «TinyLev» — это акустический левитатор, который может быть сконструирован из широко доступных недорогих готовых компонентов и одной рамки, напечатанной на 3D-принтере.

Первая демонстрация возможности акустической левитации была сделана в экспериментах с трубкой Кундта в 1866 году. Эксперимент в резонансной камере продемонстрировал, что частицы могут собираться в узлах стоячей волны силами акустического излучения. Однако первоначальный эксперимент проводился с целью расчета длин волн и, следовательно, скорости звука внутри газа.

Первая левитация была продемонстрирована Бюксом и Мюллером в 1933 году, которые левитировали капли спирта между кристаллом кварца и отражателем. Следующий шаг вперед был сделан Хилари Сент-Клер, которая интересовалась силами акустического излучения в первую очередь для их применения при агломерации частиц пыли для использования в горнодобывающей промышленности. Он создал первое электромагнитное устройство для создания амплитуд возбуждения, необходимых для левитации, затем перешел к левитации более крупных и тяжелых предметов, включая монету.

#физика #наука #science #physics #акустика #волны #опыты #эксперименты #видеоуроки

💡 Physics.Math.Code // @physics_lib
👍51🔥19104
2025/07/10 15:51:08
Back to Top
HTML Embed Code: