Media is too big
VIEW IN TELEGRAM
Двухтактный двигатель — поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня. Такты сжатия и рабочего хода в двухтактном двигателе (за исключением двигателя Ленуара) происходят так же, как и в четырёхтактном (а значит, возможна реализация тех же термодинамических циклов, кроме цикла Аткинсона), но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за короткое время, когда поршень находится вблизи нижней мёртвой точки. Процесс удаления из цилиндра отработавших газов и наполнения его свежим зарядом в двухтактном двигателе называется продувкой.
Один из первых патентов на двухтактный двигатель был выдан в 1881 году шотландскому инженеру Дугладу Клерку. Его двигатель состоял из двух цилиндров: рабочего и нагнетательного. Впервые двухтактный двигатель с камерной продувкой, не требующей дополнительных поршней предложил английский изобретатель Джозеф Дей в 1891 году и в дальнейшем доработан одним из его подчинённых, Фредериком Коком. Независимо от них в 1879 году Карл Бенц построил двухтактный газовый двигатель, на который получил патент в 1880 году. В 1907 году двухтактный дизель водяного охлаждения с противоположно-движущимися поршнями с двумя коленвалами был построен на Коломенском заводе. Для продувки использовался один из цилиндров. Конструктор, главный инженер Коломенского завода Раймонд Александрович Корейво, 6 ноября 1907 года запатентовал двигатель во Франции, потом демонстрировал его на международных выставках. Дизели Корейво серийно использовались при постройке теплоходов. В 1908 году двухтактный двигатель нашёл применение на построенном Альфредом Скоттом[англ.] из Йоркшира мотоцикле — это был двухцилиндровый двухтактный двигатель с водяным охлаждением.
Сравнение двухтактного и четырёхтактного двигателя: Рабочий цикл двухтактного двигателя происходит за один оборот коленчатого вала, что позволяет снимать в 1,5-1,7 раза бо́льшую мощность с того же рабочего объёма при тех же оборотах двигателя. Это особенно актуально при создании тяжёлых тихоходных двигателей средних и тяжёлых судов, соединяемых непосредственно с валом гребного винта регулируемого шага, а также в поршневой авиации, где для эффективной работы воздушного винта также требуются сравнительно низкие рабочие обороты, что позволяет устранить из конструкции редуктор привода на винт.
В качестве автомобильного или, тем более, мотоциклетного такой двигатель менее выгоден, тем не менее также позволяет создать сравнительно компактные, но мощные силовые агрегаты, нашедшие применение в мототехнике и, ранее, микролитражных и малолитражных легковых автомобилях (с кривошипно-камерной продувкой, рабочим объёмом обычно до 1,5 — 1,7 литра), а также на грузовых автомобилях и автобусах (с прямоточной продувкой, рабочим объёмом обычно от 4 литров и более). Также, невыгодна и более низкая экологичность двухтактных бензиновых двигателей - вместе с топливом в цилиндр поступает и специальное масло, которое также подвергается сгоранию, выделяя ядовитые продукты горения и пиролиза. Выхлоп двухтактных бензиновых двигателей более токсичен, чем у четырëхтактных.
⚙️ W-образный двигатель
⚙️ Как связано давление масла в ДВС и капитальный ремонт двигателя?
⚙️ Роторный двигатель
⚙️ Работающая модель одноцилиндрового бензинового мини двигателя
⚙️ Самым мощным и большим в мире двигателем для морских судов является...
⚙️ Кто изобрел ДВС ?
#двс #механика #техника #физика #physics #science #инженерия
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥47👍34❤13✍1⚡1😍1🆒1
This media is not supported in your browser
VIEW IN TELEGRAM
▪️ Нарушение магнитного потока в трансформаторах
▪️ Перегрев первичной цепи
#физика #электродинамика #задачи #магнетизм #physics #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍119❤🔥11🔥7❤3⚡3💊3😱2🤨2
This media is not supported in your browser
VIEW IN TELEGRAM
📿 Задача по логике от Microsoft [2 шнура]
У Вас есть два шнура (фитиля). Каждый шнур, подожженный с конца, полностью сгорает дотла ровно за один час, но при этом горит с неравномерной скоростью. Как при помощи этих шнуров и зажигалки отмерить время в 45 минут?
#алгоритмы #математика #задачи #логика #code #computer_science
💡 Physics.Math.Code // @physics_lib
У Вас есть два шнура (фитиля). Каждый шнур, подожженный с конца, полностью сгорает дотла ровно за один час, но при этом горит с неравномерной скоростью. Как при помощи этих шнуров и зажигалки отмерить время в 45 минут?
#алгоритмы #математика #задачи #логика #code #computer_science
💡 Physics.Math.Code // @physics_lib
👍63🔥12❤9🗿5🤯4🫡2
📙 Основы теории транзисторов и транзисторных схем [1977] Степаненко И. П.
💾 Скачать книгу
Глава первая. Полупроводники
Глава вторая. Полупроводниковые диоды
Глава третья. Разновидности полупроводниковых диодов
Глава четвертая. Транзисторы
Глава пятая. Разновидности транзисторов
Глава шестая. Статический режим усилительного каскада
Глава седьмая. Усилители с емкостной связью
Глава восьмая. Обратная связь в усилителя
Глава девятая. Эмиттерные повторители
Глава десятая. Каскад с эмиттерным входом
Глава одиннадцатая. Усилители с трансформаторной связью
Глава двенадцатая. Мощные выходные каскады
Глава тринадцатая. Усилители постоянного тока 13-1. Введение
Глава четырнадцатая. Дифференциальный каскад
Глава пятнадцатая. Транзисторные ключи
Глава шестнадцатая. Симметричный триггер
Глава семнадцатая. Триггер с эмиттерной связью
Глава восемнадцатая. Мультивибраторы
Глава девятнадцатая. Одновибраторы
Глава двадцатая. Блокинг-генератор
Глава двадцать первая. Генераторы пилообразного напряжения
Глава двадцать вторая. Преобразователи постоянного напряжения
Глава двадцать третья. Стабилизаторы напряжения
#physics #физика #электроника #электричество #магнетизм #электродинамика #схемотехника
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Глава первая. Полупроводники
Глава вторая. Полупроводниковые диоды
Глава третья. Разновидности полупроводниковых диодов
Глава четвертая. Транзисторы
Глава пятая. Разновидности транзисторов
Глава шестая. Статический режим усилительного каскада
Глава седьмая. Усилители с емкостной связью
Глава восьмая. Обратная связь в усилителя
Глава девятая. Эмиттерные повторители
Глава десятая. Каскад с эмиттерным входом
Глава одиннадцатая. Усилители с трансформаторной связью
Глава двенадцатая. Мощные выходные каскады
Глава тринадцатая. Усилители постоянного тока 13-1. Введение
Глава четырнадцатая. Дифференциальный каскад
Глава пятнадцатая. Транзисторные ключи
Глава шестнадцатая. Симметричный триггер
Глава семнадцатая. Триггер с эмиттерной связью
Глава восемнадцатая. Мультивибраторы
Глава девятнадцатая. Одновибраторы
Глава двадцатая. Блокинг-генератор
Глава двадцать первая. Генераторы пилообразного напряжения
Глава двадцать вторая. Преобразователи постоянного напряжения
Глава двадцать третья. Стабилизаторы напряжения
#physics #физика #электроника #электричество #магнетизм #электродинамика #схемотехника
💡 Physics.Math.Code // @physics_lib
👍48🔥16😱5❤4❤🔥2⚡1🗿1
Основы_теории_транзисторов_и_транзисторных_схем_1977_Степаненко.djvu
8.9 MB
📙 Основы теории транзисторов и транзисторных схем [1977] Степаненко И. П.
В книге проводятся анализ и расчет основных типов транзисторных усилителей, импульсных схем и источников питания. Анализу схем предшествует рассмотрение физических процессов в полупроводниковых диодах и транзисторах и характеристик диодов и транзисторов в качестве схемных элементов. Существенно переработана по сравнению с третьим изданием, вышедшим в 1973 г., первая часть книги, во вторую и третью части введены новые главы.
Книга предназначена для инженеров, аспирантов и студентов вузов, специализирующихся по микроэлектронике и прикладной электронике, вычислительной технике, автоматике и приборостроению.
Степаненко Игорь Павлович — автор учебного пособия для студентов вузов «Основы микроэлектроники». В 1965 году создал в МИФИ первую в СССР кафедру микроэлектроники. Также И. П. Степаненко написал книгу «Основы теории транзисторов и транзисторных схем», в которой проводит анализ и расчёт основных типов транзисторных усилителей, импульсных схем и источников питания. Книга предназначена для инженеров, аспирантов и студентов вузов, специализирующихся по микроэлектронике и прикладной электронике, вычислительной технике, автоматике и приборостроению.
#physics #физика #электроника #электричество #магнетизм #электродинамика #схемотехника
💡 Physics.Math.Code // @physics_lib
В книге проводятся анализ и расчет основных типов транзисторных усилителей, импульсных схем и источников питания. Анализу схем предшествует рассмотрение физических процессов в полупроводниковых диодах и транзисторах и характеристик диодов и транзисторов в качестве схемных элементов. Существенно переработана по сравнению с третьим изданием, вышедшим в 1973 г., первая часть книги, во вторую и третью части введены новые главы.
Книга предназначена для инженеров, аспирантов и студентов вузов, специализирующихся по микроэлектронике и прикладной электронике, вычислительной технике, автоматике и приборостроению.
Степаненко Игорь Павлович — автор учебного пособия для студентов вузов «Основы микроэлектроники». В 1965 году создал в МИФИ первую в СССР кафедру микроэлектроники. Также И. П. Степаненко написал книгу «Основы теории транзисторов и транзисторных схем», в которой проводит анализ и расчёт основных типов транзисторных усилителей, импульсных схем и источников питания. Книга предназначена для инженеров, аспирантов и студентов вузов, специализирующихся по микроэлектронике и прикладной электронике, вычислительной технике, автоматике и приборостроению.
#physics #физика #электроника #электричество #магнетизм #электродинамика #схемотехника
💡 Physics.Math.Code // @physics_lib
👍53❤13🔥4⚡3❤🔥2🗿1
📕 Основы микроэлектроники [2001] Степаненко И.П.
💾 Скачать книгу
Степаненко Игорь Павлович — автор учебного пособия для студентов вузов «Основы микроэлектроники». В 1965 году создал в МИФИ первую в СССР кафедру микроэлектроники. Также И. П. Степаненко написал книгу «Основы теории транзисторов и транзисторных схем», в которой проводит анализ и расчёт основных типов транзисторных усилителей, импульсных схем и источников питания.
#physics #физика #электроника #электричество #магнетизм #электродинамика #схемотехника
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Степаненко Игорь Павлович — автор учебного пособия для студентов вузов «Основы микроэлектроники». В 1965 году создал в МИФИ первую в СССР кафедру микроэлектроники. Также И. П. Степаненко написал книгу «Основы теории транзисторов и транзисторных схем», в которой проводит анализ и расчёт основных типов транзисторных усилителей, импульсных схем и источников питания.
#physics #физика #электроника #электричество #магнетизм #электродинамика #схемотехника
💡 Physics.Math.Code // @physics_lib
🔥46👍27❤7⚡4❤🔥1🤓1
Основы_микроэлектроники_2001_Степаненко_И_П_.pdf
46.4 MB
📕 Основы микроэлектроники [2001] Степаненко И.П.
Со времени выхода в свет первого издания учебного пособия для студентов вузов «Основы микроэлектроники» прошло почти двадцать лет. За эти годы труд Игоря Павловича Степаненко, скончавшегося в 1982 г., оказал добрую помощь нескольким поколениям выпускников русскоязычных вузов и студентам, осваивавшим основы микроэлектроники на английском и испанском языках. К сожалению, в настоящее время книга И.П. Степаненко стала библиографической редкостью.
И.П. Степаненко справедливо считал, что инженеру-физику, специализирующемуся по микроэлектронике, необходимо свободно ориентироваться в трех ее базовых составляющих: физических, технологических и схемотехнических основах микроэлектронных приборов и структур.
Методология изложения и фактический материал «Основ микроэлектроники» бережно сохранены в новом издании, поэтому мы считаем И. П. Степаненко основным автором книги. Настоящее издание подготовлено учениками и соратниками И.П. Степаненко, создавшего в 1965 г. в МИФИ первую в СССР кафедру микроэлектроники. Естественно, что данное издание – не простое повторение материала прошлых лет. В учебное пособие включены новые фундаментальные достижения в области микроэлектроники, используемые сейчас на практике.
В настоящем издании авторы старались учесть новые веяния в организации учебного процесса, в частности, свободное посещение студентами лекций. Так, в конце каждого раздела приведены контрольные вопросы для самостоятельной проработки.#physics #физика #электроника #электричество #магнетизм #электродинамика #схемотехника
💡 Physics.Math.Code // @physics_lib
Со времени выхода в свет первого издания учебного пособия для студентов вузов «Основы микроэлектроники» прошло почти двадцать лет. За эти годы труд Игоря Павловича Степаненко, скончавшегося в 1982 г., оказал добрую помощь нескольким поколениям выпускников русскоязычных вузов и студентам, осваивавшим основы микроэлектроники на английском и испанском языках. К сожалению, в настоящее время книга И.П. Степаненко стала библиографической редкостью.
И.П. Степаненко справедливо считал, что инженеру-физику, специализирующемуся по микроэлектронике, необходимо свободно ориентироваться в трех ее базовых составляющих: физических, технологических и схемотехнических основах микроэлектронных приборов и структур.
Методология изложения и фактический материал «Основ микроэлектроники» бережно сохранены в новом издании, поэтому мы считаем И. П. Степаненко основным автором книги. Настоящее издание подготовлено учениками и соратниками И.П. Степаненко, создавшего в 1965 г. в МИФИ первую в СССР кафедру микроэлектроники. Естественно, что данное издание – не простое повторение материала прошлых лет. В учебное пособие включены новые фундаментальные достижения в области микроэлектроники, используемые сейчас на практике.
В настоящем издании авторы старались учесть новые веяния в организации учебного процесса, в частности, свободное посещение студентами лекций. Так, в конце каждого раздела приведены контрольные вопросы для самостоятельной проработки.#physics #физика #электроника #электричество #магнетизм #электродинамика #схемотехника
💡 Physics.Math.Code // @physics_lib
👍85🤩8❤🔥6🔥6❤5⚡4
Media is too big
VIEW IN TELEGRAM
🌿 Фракталы: Порядок в хаосе [2008] В поисках скрытого измерения [Fractals. Hunting the Hidden Dimension]
Возможно вы не знаете этого, но фракталы, подобно воздуху которым вы дышите, всегда находятся рядом с нами. Их нерегулярные повторяющиеся формы обнаруживаются в плывущих облаках, ветвях деревьев, форме кочанов капусты брокколи, скалистых горных пиках, даже в сердечном ритме. В этом фильме NOVA отправляет своего зрителя в захватывающее приключение вместе с группой безумных математиков, задавшихся целью найти законы, управляющие геометрией фракталов.
Столетиями фрактало-подобные формы считались находящимися за пределами математического понимания. Сегодня математики наконец-то начали наносить на карту эту неизведанную страну. Эта потрясающая находка дала нам более глубокое понимание природы и позволила раздвинуть границы доступного для наших научных, медицинских и художественных возможностей, от понимания экологии тропических лесов до изобретения новых покроев модной одежды. Этот фильм рассказывает о дизайнерах одежды, специалистах по спецэффектам, физиках и исследователях, которым удалось добиться успеха благодаря использованию фрактальной геометрии.
#нелинейная_динамика #теория_хаоса #математика #дискретная_математика #math #gif #фракталы #science
💡 Physics.Math.Code // @physics_lib
Страна: США, PBS Nova
Режиссер: Michael Schwarz, Bill Jersey / Михаэль Шварц, Билл Джерси
Возможно вы не знаете этого, но фракталы, подобно воздуху которым вы дышите, всегда находятся рядом с нами. Их нерегулярные повторяющиеся формы обнаруживаются в плывущих облаках, ветвях деревьев, форме кочанов капусты брокколи, скалистых горных пиках, даже в сердечном ритме. В этом фильме NOVA отправляет своего зрителя в захватывающее приключение вместе с группой безумных математиков, задавшихся целью найти законы, управляющие геометрией фракталов.
Столетиями фрактало-подобные формы считались находящимися за пределами математического понимания. Сегодня математики наконец-то начали наносить на карту эту неизведанную страну. Эта потрясающая находка дала нам более глубокое понимание природы и позволила раздвинуть границы доступного для наших научных, медицинских и художественных возможностей, от понимания экологии тропических лесов до изобретения новых покроев модной одежды. Этот фильм рассказывает о дизайнерах одежды, специалистах по спецэффектам, физиках и исследователях, которым удалось добиться успеха благодаря использованию фрактальной геометрии.
#нелинейная_динамика #теория_хаоса #математика #дискретная_математика #math #gif #фракталы #science
💡 Physics.Math.Code // @physics_lib
👍49🔥12❤8😍4
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Водород считается одним из наиболее перспективных видов топлива и зарекомендовал себя как эффективный и экологически чистый энергоноситель. С практической точки зрения горение водорода связано с его использованием в энергетических установках и топливных элементах и безопасностью соответствующих технологических процессов и устройств. Удельная теплота сгорания водорода составляет примерно 140 МДж/кг (верхняя) или 120 МДж/кг (нижняя), что в несколько раз превышает удельную теплоту сгорания углеводородных топлив (для метана — около 50 МДж/кг).
Смеси водорода с кислородом или воздухом взрывоопасны и называются гремучим газом. При зажигании искрой или другим источником смесь водорода с воздухом небольшого объёма сгорает чрезвычайно быстро, с громким хлопком, что субъективно воспринимается как взрыв. В физике горения такой процесс считается медленным горением, или дефлаграцией, однако гремучий газ способен и к детонации, при этом действие взрыва оказывается существенно более сильным.
Наиболее взрывоопасны смеси с составом, близким к стехиометрическому, в стехиометрической смеси на один моль кислорода приходится два моля водорода, то есть, с учётом того, что в воздухе соотношение кислорода и азота и других не участвующих в горении газов по объёму составляет примерно 21 % : 79 % = 1:3,72, то объёмное соотношение водорода с воздухом в гремучем газе в стехиометрическом соотношении составляет ≈0,42. Однако гремучий газ способен гореть в широком диапазоне концентраций водорода в воздухе, от 4—9 объёмных процентов в бедных смесях и до 75 % в богатых смесях. Приблизительно в этих же пределах он способен и детонировать.
#физика #химия #опыты #эксперименты #physics #science #видеоуроки #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥49👍31😱6❤5🥰2
☢️ Атом: энергия мира [2024]
От первых атомных электростанций до ядерных беспилотных субмарин 5-го поколения: российская атомная энергетика продолжает двигать вперед не только отечественную экономику, но и мировую промышленность. Как развивалась атомная отрасль страны? Кто стоял у ее истоков и каких успехов достигли российские ученые-ядерщики? Что такое ядерная триада и как атомная промышленность поддерживает безопасность страны? Каким образом российский атом изменил Арктику и что ждет атомную энергетику России уже через 30 лет?
▪️ 01. Атомные станции
▪️ 02. Атомные подводные лодки
▪️ 03. Атомоходы
▪️ 04. Ядерный щит
#физика #химия #радиоактивность #атом #опыты #эксперименты #physics #science #видеоуроки #научные_фильмы
💡 Physics.Math.Code // @physics_lib
От первых атомных электростанций до ядерных беспилотных субмарин 5-го поколения: российская атомная энергетика продолжает двигать вперед не только отечественную экономику, но и мировую промышленность. Как развивалась атомная отрасль страны? Кто стоял у ее истоков и каких успехов достигли российские ученые-ядерщики? Что такое ядерная триада и как атомная промышленность поддерживает безопасность страны? Каким образом российский атом изменил Арктику и что ждет атомную энергетику России уже через 30 лет?
▪️ 01. Атомные станции
▪️ 02. Атомные подводные лодки
▪️ 03. Атомоходы
▪️ 04. Ядерный щит
#физика #химия #радиоактивность #атом #опыты #эксперименты #physics #science #видеоуроки #научные_фильмы
💡 Physics.Math.Code // @physics_lib
👍59🔥24⚡8❤7🗿6💊5❤🔥2🌚1👻1
📱 Revisiting BPR: A Replicability Study of a Common Recommender System Baseline
💾 Скачать исследование – ссылка
Ученые из лаборатории искусственного интеллекта T-Bank AI Research представили новый алгоритм, который с помощью ИИ увеличивает точность онлайн-рекомендаций до 50% в некоторых случаях. Разработчики взяли за основу и улучшили популярный алгоритм для предсказания предпочтений пользователей Bayesian Personalized Ranking, который считается одним из мировых стандартов в рекомендательных системах. Поиск наиболее эффективного варианта алгоритма занял более 200 000 GPU-часов и 15 000 экспериментов на внутренних данных Т-Банка с различными комбинациями параметров модели. Отмечается также, что новая разработка оказалась на 10% точнее алгоритма Mult-VAE, которую ранее опубликовали разработчиками из Netflix.
Новый алгоритм позволит компаниям улучшать свои метрики, в том числе конверсию в покупку, средний чек и выручку. Покупатели при этом смогут быстрее находить нужные товары на маркетплейсах, а зрители — получать более персонализированные рекомендации фильмов и сериалов.
Открытие ученых было признано мировым научным сообществом и представлено на главной международной конференции по рекомендательным системам ACM RecSys.
#ИИ #AI #искусственный_интеллект #science #алгоритмы
💡 Physics.Math.Code // @physics_lib
💾 Скачать исследование – ссылка
Ученые из лаборатории искусственного интеллекта T-Bank AI Research представили новый алгоритм, который с помощью ИИ увеличивает точность онлайн-рекомендаций до 50% в некоторых случаях. Разработчики взяли за основу и улучшили популярный алгоритм для предсказания предпочтений пользователей Bayesian Personalized Ranking, который считается одним из мировых стандартов в рекомендательных системах. Поиск наиболее эффективного варианта алгоритма занял более 200 000 GPU-часов и 15 000 экспериментов на внутренних данных Т-Банка с различными комбинациями параметров модели. Отмечается также, что новая разработка оказалась на 10% точнее алгоритма Mult-VAE, которую ранее опубликовали разработчиками из Netflix.
Новый алгоритм позволит компаниям улучшать свои метрики, в том числе конверсию в покупку, средний чек и выручку. Покупатели при этом смогут быстрее находить нужные товары на маркетплейсах, а зрители — получать более персонализированные рекомендации фильмов и сериалов.
Открытие ученых было признано мировым научным сообществом и представлено на главной международной конференции по рекомендательным системам ACM RecSys.
#ИИ #AI #искусственный_интеллект #science #алгоритмы
💡 Physics.Math.Code // @physics_lib
👍47🔥9❤5🗿4❤🔥3⚡3😘1