This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🧲 Магнит и медь. Закон Фарадея. Магнитное демпфирование
Многие видели опыт с постоянным магнитом, который как бы застревает внутри толстостенной медной трубки. Экспериментатор помещает постоянный магнит в виде небольшого шарика в медную трубу, которую он держит вертикально. Вопреки ожиданиям, шарик не падает сквозь трубу с ускорением свободного падения, а движется внутри трубы гораздо медленнее. Итак, в опыте мы наблюдаем, как постоянный магнит движется внутри полой медной трубы с постоянной скоростью. Зафиксируем произвольную точку в теле медной трубки и мысленно проведем поперечное сечение. Через данное сечение медной трубы проходит магнитный поток, создаваемый постоянным магнитом. Из-за того, что магнит движется вдоль трубы, в сечении проводника возникает переменный магнитный поток, то ли нарастающий, то ли убывающий в зависимости от того, приближается или отдаляется магнит от точки, где мы мысленно провели сечение. Переменный магнитный поток, согласно уравнениям Максвелла, порождает вихревое электрическое поле, вообще говоря, во всём пространстве. Однако, только там, где есть проводник, это электрическое поле приводит в движение свободные заряды, находящиеся в проводнике — возникает круговой электрический ток, который создает уже своё собственное магнитное поле и взаимодействует с магнитным полем движущегося постоянного магнита. Проще говоря, круговой электрический ток создает магнитное поле того же знака, что и постоянный магнит, и на магнит действует некая диссипативная сила, а если конкретно — сила трения. Читатель может справедливо задать вопрос: «Трение чего обо что?» Трение возникает между магнитным полем диполя и проводником. Да, это трение не механическое. Вернее сказать, тела не соприкасаются. [Подробные расчеты]
Быстрое изменение магнитного потока в катушках индуктивности или массивных деталях магнитопровода способствуют возникновению существенных по величине вихревых токов. Эти вихревые токи создают индуцированное магнитное поле, направленное так, чтобы поддержать прежнее состояние системы, то есть подавить внешнее воздействие, то есть уменьшить возрастающий поток.
В итоге в медном цилиндре создаются такие токи, которые порождают поле направленное против поля быстро приближающегося магнита. Это приводит к демпфированию магнита и выделению тепла внутри проводника (массивного куска меди). Количество энергии, переданной проводнику в виде тепла, равно изменению кинетической энергии, теряемой магнитом — чем больше потеря кинетической энергии магнита (произведение его массы и скорости), тем больше тепла накопление в проводнике и тем сильнее демпфирующий эффект. Вихревые токи, индуцированные в проводниках, намного сильнее, когда температура приближается к криогенным уровням. #gif #физика #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Многие видели опыт с постоянным магнитом, который как бы застревает внутри толстостенной медной трубки. Экспериментатор помещает постоянный магнит в виде небольшого шарика в медную трубу, которую он держит вертикально. Вопреки ожиданиям, шарик не падает сквозь трубу с ускорением свободного падения, а движется внутри трубы гораздо медленнее. Итак, в опыте мы наблюдаем, как постоянный магнит движется внутри полой медной трубы с постоянной скоростью. Зафиксируем произвольную точку в теле медной трубки и мысленно проведем поперечное сечение. Через данное сечение медной трубы проходит магнитный поток, создаваемый постоянным магнитом. Из-за того, что магнит движется вдоль трубы, в сечении проводника возникает переменный магнитный поток, то ли нарастающий, то ли убывающий в зависимости от того, приближается или отдаляется магнит от точки, где мы мысленно провели сечение. Переменный магнитный поток, согласно уравнениям Максвелла, порождает вихревое электрическое поле, вообще говоря, во всём пространстве. Однако, только там, где есть проводник, это электрическое поле приводит в движение свободные заряды, находящиеся в проводнике — возникает круговой электрический ток, который создает уже своё собственное магнитное поле и взаимодействует с магнитным полем движущегося постоянного магнита. Проще говоря, круговой электрический ток создает магнитное поле того же знака, что и постоянный магнит, и на магнит действует некая диссипативная сила, а если конкретно — сила трения. Читатель может справедливо задать вопрос: «Трение чего обо что?» Трение возникает между магнитным полем диполя и проводником. Да, это трение не механическое. Вернее сказать, тела не соприкасаются. [Подробные расчеты]
Быстрое изменение магнитного потока в катушках индуктивности или массивных деталях магнитопровода способствуют возникновению существенных по величине вихревых токов. Эти вихревые токи создают индуцированное магнитное поле, направленное так, чтобы поддержать прежнее состояние системы, то есть подавить внешнее воздействие, то есть уменьшить возрастающий поток.
В итоге в медном цилиндре создаются такие токи, которые порождают поле направленное против поля быстро приближающегося магнита. Это приводит к демпфированию магнита и выделению тепла внутри проводника (массивного куска меди). Количество энергии, переданной проводнику в виде тепла, равно изменению кинетической энергии, теряемой магнитом — чем больше потеря кинетической энергии магнита (произведение его массы и скорости), тем больше тепла накопление в проводнике и тем сильнее демпфирующий эффект. Вихревые токи, индуцированные в проводниках, намного сильнее, когда температура приближается к криогенным уровням. #gif #физика #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
История: Первоначально идея о необходимости использования комплексных чисел возникла в результате формального решения кубических уравнений, при котором в формуле Кардано под знаком квадратного корня получалось отрицательное число. Большой вклад в исследование комплексных чисел внесли Эйлер, который ввёл общепризнанное обозначение j для мнимой единицы, Декарт, Гаусс. Сам термин «комплексное число» ввёл в науку Гаусс в 1831 году. Уникальные свойства комплексных чисел и функций нашли широкое применение для решения многих практических задач в различных областях математики, физики и техники: в обработке сигналов, теории управления, электромагнетизме, теории колебаний, теории упругости и многих других. Преобразования комплексной плоскости оказались полезны в картографии и гидродинамике. Современная физика полагается на описание мира с помощью квантовой механики, которая опирается на систему комплексных чисел. Известно также несколько обобщений комплексных чисел — например, кватернионы.
✏️ Ответ и решение 🔍
#математика #математика #геометрия #math #разбор_задач #олимпиады
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
❓Вопрос для наших физиков: Почему в момент удара возникает разряд, если стекло является диэлектриком ? Попробуйте дать своё объяснение в комментариях.
#физика #опыты #эксперименты #physics #механика #наука #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
📚 Наука. Величайшие теории [50 выпусков] + Спец. выпуск
💾 Скачать книги
Наука. Величайшие теории — это коллекция книг, рассказывающая о великих научных идеях и теориях, а также их авторах. Почему мир таков? Этим вопросом человечество задается с начала времен. Наука — попытка на него ответить. Закон всемирного тяготения, теория относительности, теория чисел, квантовая механика, со всеми этими и многими другими научными теориями вы сможете познакомиться на страницах этой увлекательной коллекции! Проникнитесь духом открытий самых светлых умов всех времен: Ньютона, Эйнштейна, Планка, Гейзенберга, Архимеда...
Альберт Эйнштейн — один из самых известных людей прошлого века. Отгремело эхо той бурной эпохи, в которую ученому выпало жить и творить, эхо мировых войн и ядерных атак, но его гениальные открытия и сегодня не потеряли остроты: закон взаимосвязи массы и энергии, выраженный знаменитой формулой Е = mc², поистине пионерская квантовая теория и особенно теория относительности, навсегда изменившая наши, до того столь прочные, представления о времени и пространстве. #физика #наука #science #physics #математика #подборка_книг
Для тех, кто захочет задонать на кофе☕️:
ВТБ:
Сбер:
ЮMoney:
💡 Physics.Math.Code // @physics_lib
💾 Скачать книги
Наука. Величайшие теории — это коллекция книг, рассказывающая о великих научных идеях и теориях, а также их авторах. Почему мир таков? Этим вопросом человечество задается с начала времен. Наука — попытка на него ответить. Закон всемирного тяготения, теория относительности, теория чисел, квантовая механика, со всеми этими и многими другими научными теориями вы сможете познакомиться на страницах этой увлекательной коллекции! Проникнитесь духом открытий самых светлых умов всех времен: Ньютона, Эйнштейна, Планка, Гейзенберга, Архимеда...
Альберт Эйнштейн — один из самых известных людей прошлого века. Отгремело эхо той бурной эпохи, в которую ученому выпало жить и творить, эхо мировых войн и ядерных атак, но его гениальные открытия и сегодня не потеряли остроты: закон взаимосвязи массы и энергии, выраженный знаменитой формулой Е = mc², поистине пионерская квантовая теория и особенно теория относительности, навсегда изменившая наши, до того столь прочные, представления о времени и пространстве. #физика #наука #science #physics #математика #подборка_книг
Для тех, кто захочет задонать на кофе☕️:
ВТБ:
+79616572047
(СБП)Сбер:
+79026552832
(СБП)ЮMoney:
410012169999048
💡 Physics.Math.Code // @physics_lib
Наука. Величайшие теории [50 книг].zip
2.2 GB
📚 Наука. Величайшие теории [50 книг] [2015]
📙 Пространство - это вопрос времени. Эйнштейн. Теория относительности
📕 Самая притягательная сила природы. Ньютон. Закон всемирного тяготения
📘 Существует ли мир, если на него никто не смотрит? Гейзенберг. Принцип неопределенности
📔 Танцы со звездами. Кеплер. Движение планет
📗 На волне Вселенной. Шрёдингер. Квантовые парадоксы
📓 Когда фотон встречает электрон. Фейнман. Квантовая электродинамика
📒 Эврика! Радость открытия. Архимед. Закон Архимеда
📙 Если бы числа могли говорить. Гаусс. Теория чисел
📕 Природа описывается формулами. Галилей. Научный метод
📘 Самый сокровенный секрет материи. Мария Кюри. Радиоактивность и элементы
📔 Революция в микромире. Планк. Квантовая теория.
📗 Физика учит новый язык. Лейбниц. Анализ бесконечно малых.
📓 Вселенная работает как часы. Лаплас. Небесная механика.
📒 Трехмерный мир. Евклид. Геометрия.
📙 Размышления о думающих машинах. Тьюринг. Компьютерное исчисление.
📕 По кругу с Землей. Коперник. Гелиоцентризм.
📗 Квантовый загранпаспорт. Нильс Бор. Квантовая модель атома
📓 Тайна за тремя стенами. Пифагор. Теорема Пифагора
📒 Космос становится больше. Хаббл. Расширение Вселенной
📙 Революция в воздухе. Лавуазье. Современная химия
📕 Бесчисленное поддается подсчету. Кантор. Бесконечность в математике
📘 Физике становится тепло. Лорд Кельвин. Классическая термодинамика
📔 Темная сторона материи. Дирак. Антивещество
📗 Получение энергии. Лиза Мейтнер. Расщепление ядра
📓 Вначале была аксиома. Гильберт. Основания математики
📒 Камень, ножницы, теорема. Фон Нейман. Теория игр
📙 Двустороннее движение электричества. Тесла. Переменный ток
📕 Неопределенный электрический объект. Ампер. Классическая электродинамика
📘 В погоне за лучом. Гюйгенс. Волновая теория света
📔 Поистине светлая идея. Эдисон. Электрическое освещение
📗 В поисках формы. Гук. Закон Гука
📓 Математика переходит границы. Риман. Дифференциальная геометрия
📒 Расширяющееся знание. Гамов. Большой взрыв
и
#физика #наука #science #physics #математика #подборка_книг
💡 Physics.Math.Code // @physics_lib
📙 Пространство - это вопрос времени. Эйнштейн. Теория относительности
📕 Самая притягательная сила природы. Ньютон. Закон всемирного тяготения
📘 Существует ли мир, если на него никто не смотрит? Гейзенберг. Принцип неопределенности
📔 Танцы со звездами. Кеплер. Движение планет
📗 На волне Вселенной. Шрёдингер. Квантовые парадоксы
📓 Когда фотон встречает электрон. Фейнман. Квантовая электродинамика
📒 Эврика! Радость открытия. Архимед. Закон Архимеда
📙 Если бы числа могли говорить. Гаусс. Теория чисел
📕 Природа описывается формулами. Галилей. Научный метод
📘 Самый сокровенный секрет материи. Мария Кюри. Радиоактивность и элементы
📔 Революция в микромире. Планк. Квантовая теория.
📗 Физика учит новый язык. Лейбниц. Анализ бесконечно малых.
📓 Вселенная работает как часы. Лаплас. Небесная механика.
📒 Трехмерный мир. Евклид. Геометрия.
📙 Размышления о думающих машинах. Тьюринг. Компьютерное исчисление.
📕 По кругу с Землей. Коперник. Гелиоцентризм.
📗 Квантовый загранпаспорт. Нильс Бор. Квантовая модель атома
📓 Тайна за тремя стенами. Пифагор. Теорема Пифагора
📒 Космос становится больше. Хаббл. Расширение Вселенной
📙 Революция в воздухе. Лавуазье. Современная химия
📕 Бесчисленное поддается подсчету. Кантор. Бесконечность в математике
📘 Физике становится тепло. Лорд Кельвин. Классическая термодинамика
📔 Темная сторона материи. Дирак. Антивещество
📗 Получение энергии. Лиза Мейтнер. Расщепление ядра
📓 Вначале была аксиома. Гильберт. Основания математики
📒 Камень, ножницы, теорема. Фон Нейман. Теория игр
📙 Двустороннее движение электричества. Тесла. Переменный ток
📕 Неопределенный электрический объект. Ампер. Классическая электродинамика
📘 В погоне за лучом. Гюйгенс. Волновая теория света
📔 Поистине светлая идея. Эдисон. Электрическое освещение
📗 В поисках формы. Гук. Закон Гука
📓 Математика переходит границы. Риман. Дифференциальная геометрия
📒 Расширяющееся знание. Гамов. Большой взрыв
и
другие...
#физика #наука #science #physics #математика #подборка_книг
💡 Physics.Math.Code // @physics_lib
• infosec - один из самых ламповых каналов по информационной безопасности, где говорят об истории ИТ, публикуют актуальные новости и пишут технический материал по разным темам:
- Как зарождалась Флибуста?
- Сервисы для обеспечения безопасности в сети;
- Каким образом "компьютерные мастера" обманывают своих клиентов?
- Бесплатный бот, который проверит файлы на предмет угроз более чем 70 антивирусами одновременно.
• А еще у нас часто проходят розыгрыши самых актуальных и новых книг по ИБ. Так что присоединяйся, у нас интересно!
- Как зарождалась Флибуста?
- Сервисы для обеспечения безопасности в сети;
- Каким образом "компьютерные мастера" обманывают своих клиентов?
- Бесплатный бот, который проверит файлы на предмет угроз более чем 70 антивирусами одновременно.
• А еще у нас часто проходят розыгрыши самых актуальных и новых книг по ИБ. Так что присоединяйся, у нас интересно!
Рассмотренная выше формула с бесконечно повторяющимися радикалами являются частным случаем более общей формулы:
📝 Подробнее
Источник, где эта формула выводится более строго: A. Herschfeld, On Infinite Radicals, American Mathematical Monthly 42 (1935), no. 7, 420–421.
#math #математика #наука #алгебра #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👨🎓Информация для тех, кто хочет развиваться в Data Science
В этом году Центральный университет, созданный при поддержке 50 крупнейших компаний страны, стал одним из самых заметных образовательных проектов - подготовил школьную сборную к безоговорочной победе на первой международной Олимпиаде по ИИ в Болгарии, студенты вуза победили на AI Challenge, известный на весь мир ученый, профессор Горбань, вернулся для работы именно в этом вузе и др.
Недавно магистрант Центрального университета опубликовал статью, где рассказал, как проходит обучение в вузе. Генрих работает lead data scientist и специализируется на компьютерном зрении и 3D. Поступая в вуз, он хотел получить знания по NLP, поэтому выбрал для себя курсы: основы математики для DS, основы баз данных и SQL, продуктовая студия, основы статистики, Machine Learning, основы Python и Soft Skills Lab.
Автор отмечает, основы математики для DS для него оказался довольно непростым, несмотря на опыт с нейросетями и решением математических задач. Особенно полезной для него оказалась Продуктовая студия, в которой студенты проходят все этапы создания продукта: от генерации идеи до презентации инвесторам. Также, в статье студент выделил Soft Skills Lab, который помогает учащимся научиться работать в команде.
По мнению студента, через несколько лет университет будет фигурировать в вакансиях наряду с другими топовыми вузами по направлению DS.
#программирование #python #IT #математика #math #лекции #разработка
💡 Physics.Math.Code // @physics_lib
В этом году Центральный университет, созданный при поддержке 50 крупнейших компаний страны, стал одним из самых заметных образовательных проектов - подготовил школьную сборную к безоговорочной победе на первой международной Олимпиаде по ИИ в Болгарии, студенты вуза победили на AI Challenge, известный на весь мир ученый, профессор Горбань, вернулся для работы именно в этом вузе и др.
Недавно магистрант Центрального университета опубликовал статью, где рассказал, как проходит обучение в вузе. Генрих работает lead data scientist и специализируется на компьютерном зрении и 3D. Поступая в вуз, он хотел получить знания по NLP, поэтому выбрал для себя курсы: основы математики для DS, основы баз данных и SQL, продуктовая студия, основы статистики, Machine Learning, основы Python и Soft Skills Lab.
Автор отмечает, основы математики для DS для него оказался довольно непростым, несмотря на опыт с нейросетями и решением математических задач. Особенно полезной для него оказалась Продуктовая студия, в которой студенты проходят все этапы создания продукта: от генерации идеи до презентации инвесторам. Также, в статье студент выделил Soft Skills Lab, который помогает учащимся научиться работать в команде.
По мнению студента, через несколько лет университет будет фигурировать в вакансиях наряду с другими топовыми вузами по направлению DS.
#программирование #python #IT #математика #math #лекции #разработка
💡 Physics.Math.Code // @physics_lib
От подарка мечты вас отделяет только один шаг… Но обо всем по порядку!
Всероссийская олимпиада школьников «13-й элемент. Alхимия будущего» для учеников 8–11 классов проводит масштабный розыгрыш🎁
Среди призов:
1 игровая консоль Xbox
3 смарт-часов Xiaomi Redmi Watch 3 Active
5 наушников TWS Xiaomi Redmi
7 толстовок
10 рюкзаков
15 футболок
Розыгрыш проходит в группе олимпиады во «Вконтакте»: https://vk.com/13element_al
Впечатляет, правда? Один из подарков может стать вашим!🙌🏻 Для этого нужно зарегистрироваться на сайте и стать участником олимпиады: clck.ru/3EiNbX
Организаторы выберут победителей при помощи программы рандомус. Их имена назовут 13 февраля 2025 года❗️
Кстати, победители, призеры и финалисты олимпиады получат ценные подарки и призы от РУСАЛ и дополнительные баллы при поступлении от ведущих вузов страны. Отборочный этап олимпиады продлится до 31 января 2025 года.
Присоединяйтесь!
Всероссийская олимпиада школьников «13-й элемент. Alхимия будущего» для учеников 8–11 классов проводит масштабный розыгрыш🎁
Среди призов:
1 игровая консоль Xbox
3 смарт-часов Xiaomi Redmi Watch 3 Active
5 наушников TWS Xiaomi Redmi
7 толстовок
10 рюкзаков
15 футболок
Розыгрыш проходит в группе олимпиады во «Вконтакте»: https://vk.com/13element_al
Впечатляет, правда? Один из подарков может стать вашим!🙌🏻 Для этого нужно зарегистрироваться на сайте и стать участником олимпиады: clck.ru/3EiNbX
Организаторы выберут победителей при помощи программы рандомус. Их имена назовут 13 февраля 2025 года❗️
Кстати, победители, призеры и финалисты олимпиады получат ценные подарки и призы от РУСАЛ и дополнительные баллы при поступлении от ведущих вузов страны. Отборочный этап олимпиады продлится до 31 января 2025 года.
Присоединяйтесь!