Media is too big
VIEW IN TELEGRAM
29 августа 1831 года знаменитый английский физик Майкл Фарадей после 10 лет экспериментов открыл явление электромагнитной индукции. Это явление состоит в возникновении ЭДС индукции в замкнутом контуре при изменении магнитного потока через поверхность, ограниченную этим контуром.
Некоторые опыты Майкла Фарадея, которые имеют наибольшее значение для теории электромагнетизма:
🔸 Опыт с катушкой и магнитом. Взаимодействие движущегося магнита и катушки, намотанной из проводника, порождает электрический ток. При введении магнита в катушку в цепи возникает электрический ток одного направления (стрелка гальванометра отклоняется, например, вправо), при выведении магнита из катушки стрелка отклоняется в противоположную сторону.
🔸 Опыт с двумя катушками. По одной из них пропускали ток, к другой был подключён гальванометр. В момент начала или окончания пропускания тока по первой катушке стрелка гальванометра, подключённого ко второй, колебалась. Этот опыт показывал, что не только магнетизм можно превратить в электричество, но и электричество в магнетизм.
Видеопримеры по теме:
🔥 Индукционный нагрев
💫 «Гроб Мухаммеда»
🧲 Как работают трансформаторы?
⚡️ Основные физические понятия электродинамики (Леннаучфильм)
✨ Взаимодействие зарядов. Электростатическая индукция
💫 Исследование электрических полей. Опыт по физике
⚡️ Уравнения Максвелла ✨
⚙️ Электромагнитная подвеска 🧲
#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Вот отсортированная база с тонной материала(постепенно пополняется):
БАЗА (4687 видео/книг):
(363 видео, 87 книги) — Python
(415 видео, 68 книги) — Frontend
(143 видео, 33 книги) — ИБ/Хакинг
(352 видео, 89 книги) — С/С++
(343 видео, 87 книги) — Java
(176 видео, 32 книги) — Git
(293 видео, 63 книги) — C#
(174 видео, 91 книги) — DevOps
(167 видео, 53 книги) — PHP
(227 видео, 83 книги) — SQL/БД
(163 видео, 29 книги) — Linux
(114 видео, 77 книги) — Сисадмин
(107 видео, 43 книги) — BA/SA
(181 видео, 32 книги) — Go
(167 видео, 43 книги) — Kotlin/Swift
(112 видео, 24 книги) — Flutter
(137 видео, 93 книги) — DS/ML
(113 видео, 82 книги) — GameDev
(183 видео, 37 книги) — Дизайн
(129 видео, 73 книги) — QA
(213 видео, 63 книги) — Rust
(121 видео, 24 книги) — 1С
(136 видео, 33 книги) — PM/HR
Скачивать ничего не нужно — все выложили в Telegram
Please open Telegram to view this post
VIEW IN TELEGRAM
🔒 Как можно разломать замок голыми руками: опыт с галлием 🪙
Реакция галлия и алюминия в природе маловероятна. Но вместе с тем, именно она, может разрушить даже самый крепкий замок, сделанный из металла. Интересно то, что для подобного трюка требуется ничтожное количество галлия — достаточно просто капнуть расплавом и слегка поцарапать замок, чтобы снять оксидную пленку и обеспечить протекание реакции. Спустя 5 часов после начала реакции алюминия и галлия замок станет настолько хрупким, что с ним справится и ребенок. Галлий — жидкий металл с чрезвычайно низкой температурой плавления, который можно расплавить, просто взяв в руки. Он не встречается в природе в чистом виде и обладает рядом интересных свойств. Галлий разрушает алюминий, но абсолютно «безвреден» для олова или индия, с которыми часто вступает в различные сплавы, которые применяют в качестве различных термоинтерфейсов в электронике.
Разрушение в данном конкретном случае проявляется из-за образования после реакции галлия и алюминия небольшого оксидного слоя на поверхности сплава двух металлов. Из-за неравномерности этого слоя образуются трещины. Благодаря своеобразной кристаллической структуре металлического галлия он не просто окисляет алюминий, буквально на глазах, но и проникает в эти трещины, пропитывая поверхность насквозь. Именно поэтому мы можем наблюдать что после реакции галлий фактически разрушает алюминий, и последний крошится в руках легче лёгкого. #физика #факты #химия #опыты #эксперименты #physics
💡 Physics.Math.Code // @physics_lib
Реакция галлия и алюминия в природе маловероятна. Но вместе с тем, именно она, может разрушить даже самый крепкий замок, сделанный из металла. Интересно то, что для подобного трюка требуется ничтожное количество галлия — достаточно просто капнуть расплавом и слегка поцарапать замок, чтобы снять оксидную пленку и обеспечить протекание реакции. Спустя 5 часов после начала реакции алюминия и галлия замок станет настолько хрупким, что с ним справится и ребенок. Галлий — жидкий металл с чрезвычайно низкой температурой плавления, который можно расплавить, просто взяв в руки. Он не встречается в природе в чистом виде и обладает рядом интересных свойств. Галлий разрушает алюминий, но абсолютно «безвреден» для олова или индия, с которыми часто вступает в различные сплавы, которые применяют в качестве различных термоинтерфейсов в электронике.
Разрушение в данном конкретном случае проявляется из-за образования после реакции галлия и алюминия небольшого оксидного слоя на поверхности сплава двух металлов. Из-за неравномерности этого слоя образуются трещины. Благодаря своеобразной кристаллической структуре металлического галлия он не просто окисляет алюминий, буквально на глазах, но и проникает в эти трещины, пропитывая поверхность насквозь. Именно поэтому мы можем наблюдать что после реакции галлий фактически разрушает алюминий, и последний крошится в руках легче лёгкого. #физика #факты #химия #опыты #эксперименты #physics
💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
🌔 Трассировка лучей на языке C / Си
[Coding Ray Tracing in C]
Трассировка лучей (англ. Ray tracing; рейтрейсинг) — один из методов геометрической оптики — исследование оптических систем путём отслеживания взаимодействия отдельных лучей с поверхностями. В узком смысле — технология построения изображения трёхмерных моделей в компьютерных программах, при которых отслеживается обратная траектория распространения луча (от экрана к источнику).
Трассировка лучей в компьютерных играх — это решение для создания реалистичного освещения, отражений и теней, обеспечивающее более высокий уровень реализма по сравнению с традиционными способами рендеринга. Turing от Nvidia стала первой архитектурой (лето 2018), позволяющей проводить трассировку лучей в реальном времени на GPU.
До того как была разработана трассировка лучей, молодая область трехмерной компьютерной графики, по существу, состояла из серии «программных приёмов», имитирующих затенение освещённых объектов. Трассировка лучей была первым алгоритмом в этой области, имевшим физический смысл.
Первое изображение с трассировкой лучей было отображено на экране, подобном осциллографу, в Университете Мэриленда в 1963 году. В качестве разработчиков алгоритма трассировки лучей часто упоминают Артура Аппеля, Роберта Голдштейна и Роджера Нагеля, опубликовавших в конце 1960-х годов алгоритм. Другими исследователями, которые в то время занимались методами трассировки лучей, были Херб Стейнберг, Марти Коэн и Юджин Трубецкой.
Трассировка лучей основана на геометрической оптике, где под светом понимается группа лучей. Методы, используемые при трассировке лучей, использовались гораздо раньше, в том числе производителями оптических систем. Сегодня многие средства визуализации (компьютерные программы для создания изображений из 3D-сцен) используют трассировку лучей, возможно, в сочетании с другими процессами.
Простые формы трассировки лучей рассчитывают только прямое освещение, то есть свет, поступающий непосредственно от источников света. Однако трассировка лучей значительно расширилась в несколько раз с тех пор, как впервые была использована в компьютерной графике. Более развитые формы также учитывают непрямой свет, отражённый от других объектов; затем говорят о методе глобального освещения.
Термин Raycasting в основном описывает упрощённую форму трассировки лучей, но иногда также используется как синоним.
📱 Источник: HirschDaniel
#физика #оптика #программирование #разработка_игр #raytracing #physics #моделирование
💡 Physics.Math.Code // @physics_lib
[Coding Ray Tracing in C]
Трассировка лучей (англ. Ray tracing; рейтрейсинг) — один из методов геометрической оптики — исследование оптических систем путём отслеживания взаимодействия отдельных лучей с поверхностями. В узком смысле — технология построения изображения трёхмерных моделей в компьютерных программах, при которых отслеживается обратная траектория распространения луча (от экрана к источнику).
Трассировка лучей в компьютерных играх — это решение для создания реалистичного освещения, отражений и теней, обеспечивающее более высокий уровень реализма по сравнению с традиционными способами рендеринга. Turing от Nvidia стала первой архитектурой (лето 2018), позволяющей проводить трассировку лучей в реальном времени на GPU.
До того как была разработана трассировка лучей, молодая область трехмерной компьютерной графики, по существу, состояла из серии «программных приёмов», имитирующих затенение освещённых объектов. Трассировка лучей была первым алгоритмом в этой области, имевшим физический смысл.
Первое изображение с трассировкой лучей было отображено на экране, подобном осциллографу, в Университете Мэриленда в 1963 году. В качестве разработчиков алгоритма трассировки лучей часто упоминают Артура Аппеля, Роберта Голдштейна и Роджера Нагеля, опубликовавших в конце 1960-х годов алгоритм. Другими исследователями, которые в то время занимались методами трассировки лучей, были Херб Стейнберг, Марти Коэн и Юджин Трубецкой.
Трассировка лучей основана на геометрической оптике, где под светом понимается группа лучей. Методы, используемые при трассировке лучей, использовались гораздо раньше, в том числе производителями оптических систем. Сегодня многие средства визуализации (компьютерные программы для создания изображений из 3D-сцен) используют трассировку лучей, возможно, в сочетании с другими процессами.
Простые формы трассировки лучей рассчитывают только прямое освещение, то есть свет, поступающий непосредственно от источников света. Однако трассировка лучей значительно расширилась в несколько раз с тех пор, как впервые была использована в компьютерной графике. Более развитые формы также учитывают непрямой свет, отражённый от других объектов; затем говорят о методе глобального освещения.
Термин Raycasting в основном описывает упрощённую форму трассировки лучей, но иногда также используется как синоним.
#физика #оптика #программирование #разработка_игр #raytracing #physics #моделирование
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Падение потенциала вдоль проводника происходит, когда электрический ток протекает по цепи и происходит уменьшение электрического потенциала носителей заряда вдоль пути прохождения тока.
При равновесии зарядов, то есть при отсутствии тока, потенциал всех точек проводника имеет одно и то же значение, а напряжённость электрического поля внутри него равна нулю. При наличии тока электрическое поле внутри проводника отлично от нуля, и вдоль проводника с током имеет место падение потенциала.
Между падением потенциала (напряжением U) и силой тока в проводнике I существует функциональная зависимость, называемая вольтамперной характеристикой данного проводника. Для многих проводящих материалов выполняется зависимость, получившая название закона Ома для однородного участка цепи: U = IR, где коэффициент пропорциональности R называется сопротивлением проводника.
Видеопримеры по теме:
🔥 Индукционный нагрев
💫 «Гроб Мухаммеда»
🧲 Как работают трансформаторы?
⚡️ Основные физические понятия электродинамики (Леннаучфильм)
✨ Взаимодействие зарядов. Электростатическая индукция
💫 Исследование электрических полей. Опыт по физике
⚡️ Уравнения Максвелла ✨
⚙️ Электромагнитная подвеска 🧲
#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🧲 Почему магнитная подвеска на постоянных магнитах невозможна?
Неодимовые магниты очень мощные и опыты с ними интересные. Но давайте мысленно разберем почему они не подходят для создания автомобильной подвески.
1. Неодимовые магниты хрупкие, потому что это естественное свойство сильных магнитов. Они могут сломаться или расколоться от удара или давления. Внешне магниты выглядят очень твёрдыми и цельными, но это лишь тонкая обработка поверхности никелем, цинком, медью, а для водонепроницаемых магнитов — тефлоном, пластиком или резиной. Покрытие защищает магнит от воздействия внешней среды, но не от повышенного давления или удара. Например, если неодимовый магнит упадёт на землю или произойдёт сильный удар другим магнитом или опорным основанием, он может легко треснуть. Чтобы предотвратить разрушение, магниты покрываются защитными материалами, такими как никель, цинк, медь или даже золото.
2. Точка Кюри. В случае локального перегрева у нас исчезают магнитные свойства. Температура Кюри для неодимовых магнитов составляет около 310–400 градусов Цельсия. При достижении этой температуры структура магнита необратимо повреждается и его невозможно снова намагничивать. А это не такая уж большая температура в технике.
3. По сути вы не сможете настроить скорость сжатия и отбоя, как это делается на стандартных подвесках (даже у велосипедов).
4. Подвеска из постоянных магнитов невозможна, потому что с их помощью нельзя достичь конфигурации магнитного поля с потенциальной ямой. Это следует из теоремы Ирншоу. Для создания магнитного подвеса используют управляемые поля и обратную связь.
#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Неодимовые магниты очень мощные и опыты с ними интересные. Но давайте мысленно разберем почему они не подходят для создания автомобильной подвески.
1. Неодимовые магниты хрупкие, потому что это естественное свойство сильных магнитов. Они могут сломаться или расколоться от удара или давления. Внешне магниты выглядят очень твёрдыми и цельными, но это лишь тонкая обработка поверхности никелем, цинком, медью, а для водонепроницаемых магнитов — тефлоном, пластиком или резиной. Покрытие защищает магнит от воздействия внешней среды, но не от повышенного давления или удара. Например, если неодимовый магнит упадёт на землю или произойдёт сильный удар другим магнитом или опорным основанием, он может легко треснуть. Чтобы предотвратить разрушение, магниты покрываются защитными материалами, такими как никель, цинк, медь или даже золото.
2. Точка Кюри. В случае локального перегрева у нас исчезают магнитные свойства. Температура Кюри для неодимовых магнитов составляет около 310–400 градусов Цельсия. При достижении этой температуры структура магнита необратимо повреждается и его невозможно снова намагничивать. А это не такая уж большая температура в технике.
3. По сути вы не сможете настроить скорость сжатия и отбоя, как это делается на стандартных подвесках (даже у велосипедов).
4. Подвеска из постоянных магнитов невозможна, потому что с их помощью нельзя достичь конфигурации магнитного поля с потенциальной ямой. Это следует из теоремы Ирншоу. Для создания магнитного подвеса используют управляемые поля и обратную связь.
#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
Паровая машина — тепловой двигатель внешнего сгорания, преобразующий энергию водяного пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразует энергию пара в механическую работу, таким образом к паровым машинам можно было бы отнести и паровую турбину, имеющую до сих пор широкое применение во многих областях техники.
Первый паровой двигатель был создан и использован Фердинандом Вербистом в 1672 году в его изобретении - игрушкой на паровом двигателе, сделанной для китайского императора. Вторая паровая машина была построена в XVII веке французским физиком Дени Папеном и представляла собой цилиндр с поршнем, который поднимался под действием пара, а опускался давлением атмосферы после сгущения отработавшего пара. На этом же принципе были построены в 1705 году вакуумные паровые машины Севери и Ньюкомена для выкачивания воды из копей.
Значительные усовершенствования в вакуумной паровой машине были сделаны Джеймсом Уаттом в 1769 году. Дальнейшее значительное усовершенствование парового двигателя (применение на рабочем ходу пара высокого давления вместо вакуума) было сделано американцем Оливером Эвансом в 1786 году и англичанином Ричардом Тревитиком в 1800 году.
В России первая действующая паровая машина была построена в 1766 году по проекту Ивана Ползунова, предложенному им в 1763 году. Машина Ползунова имела два цилиндра с поршнями, работала непрерывно, и все действия в ней проходили автоматически. Но увидеть своё изобретение в работе И. И. Ползунову не пришлось: он умер 27 мая 1766 года, а его машина пущена в эксплуатацию на Барнаульском заводе только летом. Через пару месяцев из-за поломки она перестала действовать и впоследствии была демонтирована. #опыты #научные_фильмы #физика #термодинамика #мкт #видеоуроки #gif #physics
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
📕 Алгоритмы решения задач по механике в средней школе [1988] Гутман В.И., Мощанский В.Н.
💾 Скачать книгу
Гутман Владимир Иосифович — в 1964 году защитил диссертацию на соискание учёной степени кандидата физико-математических наук на тему «Чужеродные ионы в процессах аддитивного и фотохимического окрашивания кристаллов щелочно-галоидных солей».
Мощанский Владимир Николаевич (1932 — 1997) — кандидат педагогических наук, профессор, специалист в области преподавания методики физики.
Для тех, кто захочет задонать на кофе ☕️:
ВТБ:
Сбер:
ЮMoney:
#механика #динамика #физика #кинематика #разбор_задач #наука #science #physics
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Гутман Владимир Иосифович — в 1964 году защитил диссертацию на соискание учёной степени кандидата физико-математических наук на тему «Чужеродные ионы в процессах аддитивного и фотохимического окрашивания кристаллов щелочно-галоидных солей».
Мощанский Владимир Николаевич (1932 — 1997) — кандидат педагогических наук, профессор, специалист в области преподавания методики физики.
Для тех, кто захочет задонать на кофе ☕️:
ВТБ:
+79616572047
(СБП)Сбер:
+79026552832
(СБП)ЮMoney:
410012169999048
#механика #динамика #физика #кинематика #разбор_задач #наука #science #physics
💡 Physics.Math.Code // @physics_lib
Алгоритмы_решения_задач_по_механике_в_средней_школе_1988_Гутман.djvu
636.9 KB
📕 Алгоритмы решения задач по механике в средней школе [1988] Гутман В.И., Мощанский В.Н.
В книге сформулированы дидактические обоснованные требования к конструированию алгоритмов решения задач по механике и даны методические рекомендации по использованию алгоритмического подхода к решению задач на уроках физики.
Использование алгоритмов во многом рационализирует и облегчает процесс формирования у школьников умений решать физические задачи. Может быть, использование алгоритмов в обучении физике будет даже способствовать осознанию школьниками важного в современной науке понятия «алгоритм» и тем самым содействовать решению задачи всеобщей компьютерной грамотности, которая поставлена перед системой народного образования. Издательство: Просвещение. #механика #динамика #физика #кинематика #разбор_задач #наука #science #physics
💡 Physics.Math.Code // @physics_lib
В книге сформулированы дидактические обоснованные требования к конструированию алгоритмов решения задач по механике и даны методические рекомендации по использованию алгоритмического подхода к решению задач на уроках физики.
Использование алгоритмов во многом рационализирует и облегчает процесс формирования у школьников умений решать физические задачи. Может быть, использование алгоритмов в обучении физике будет даже способствовать осознанию школьниками важного в современной науке понятия «алгоритм» и тем самым содействовать решению задачи всеобщей компьютерной грамотности, которая поставлена перед системой народного образования. Издательство: Просвещение. #механика #динамика #физика #кинематика #разбор_задач #наука #science #physics
💡 Physics.Math.Code // @physics_lib
🟠 Принцип работы моторного масла заключается в том, что оно обеспечивает подачу смазки на все трущиеся детали двигателя.
Когда машина не заведена, масло размещается в поддоне картера. Сразу после запуска мотора включается насос, который забирает жидкость из картера и заполняет ей всю систему, прогоняя масло через фильтр.
Далее масло поступает к коренным и шатунным подшипникам коленвала, а также опорным подшипникам и кулачкам распредвала ГРМ. Из переднего коренного подшипника коленчатого вала масло идёт на привод ГРМ и в головку блока цилиндров, где образуется масляная ванна, благодаря чему смазываются коромысла, толкатели, клапаны и другие детали.
Из ГБЦ моторное масло уходит в поддон по сливным каналам. Также масло подаётся в каналы в шатунах и разбрызгивается на стенки цилиндров и поверхности поршней: с помощью смазки происходит их охлаждение, плюс снижается трение поршневых колец о стенки цилиндра.
В некоторых типах двигателей смазку поршневых пальцев и цилиндров обеспечивает масляный туман, который образуют мелкие частицы жидкости, распылённые в воздухе. Он создаётся тем, что капли стекающей вниз смазочной жидкости разбиваются деталями кривошипно-шатунного механизма.
Если мотор оснащён системой турбонаддува, то масло подаётся и на турбокомпрессор: с учётом высокой скорости вращения компрессор, лишённый смазки, быстро выйдет из строя. #механика #динамика #физика #кинематика #техника #наука #science #physics #вязкость
💡 Physics.Math.Code // @physics_lib
Когда машина не заведена, масло размещается в поддоне картера. Сразу после запуска мотора включается насос, который забирает жидкость из картера и заполняет ей всю систему, прогоняя масло через фильтр.
Далее масло поступает к коренным и шатунным подшипникам коленвала, а также опорным подшипникам и кулачкам распредвала ГРМ. Из переднего коренного подшипника коленчатого вала масло идёт на привод ГРМ и в головку блока цилиндров, где образуется масляная ванна, благодаря чему смазываются коромысла, толкатели, клапаны и другие детали.
Из ГБЦ моторное масло уходит в поддон по сливным каналам. Также масло подаётся в каналы в шатунах и разбрызгивается на стенки цилиндров и поверхности поршней: с помощью смазки происходит их охлаждение, плюс снижается трение поршневых колец о стенки цилиндра.
В некоторых типах двигателей смазку поршневых пальцев и цилиндров обеспечивает масляный туман, который образуют мелкие частицы жидкости, распылённые в воздухе. Он создаётся тем, что капли стекающей вниз смазочной жидкости разбиваются деталями кривошипно-шатунного механизма.
Если мотор оснащён системой турбонаддува, то масло подаётся и на турбокомпрессор: с учётом высокой скорости вращения компрессор, лишённый смазки, быстро выйдет из строя. #механика #динамика #физика #кинематика #техника #наука #science #physics #вязкость
💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
Для понимания процесса нужно записать на черновике два параметрических уравнения, которые получаются, когда кругл «катится» по плоскости:
x = r⋅t - h⋅sin(t)
y = r - h⋅cos(t)
Для эпициклоиды уже сложнее:
x = R⋅(m+1)⋅cos(m⋅t) - h⋅cos((m+1)⋅t)
y = R⋅(m+1)⋅sin(m⋅t) - h⋅sin((m+1)⋅t)
где
m = r/R
, R
— радиус неподвижной окружности (опорная поверхность), r
— радиус катящейся окружности. h
— расстояние от центра катящейся окружности до точки маркера (за которой мы следим, точка, которая рисует).Ну а если тут положить
R → ∞
и h → R
, то мы получаем уравнения классической циклоиды, график которой описывает крайняя точка на колесе машины, которая едет с постоянной скоростью и без проскальзывания.❓Математические вопросы для наших подписчиков:
▪️ Попробуйте выразить явную зависимость y(x). Получится у вас это сделать?
▪️ На видео видно, что мы получаем семейство кривых, которые после каждого полного «круга» немного смещаются. Для этого смещения обязательно ли число зубьев на маленьком колесе и число зубьев на опорной кривой должны быть взаимно простыми числами? Или достаточно лишь того, чтобы они отличались хотя бы на 1 ?
➰ Красота параметрических кривых
⭕️ Точки пересечения кругов на воде движутся по гиперболе
🕑 Экстремальная задача на смекалку
#математика #mathematics #animation #math #геометрия #geometry #gif
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
⏳ Задача: Почему опрокинулась кювета? Кювета с водой стоит на бруске. На воде плавает коробочка с гирей. Кювета находится в равновесии. Если вынуть гирю из коробочки и поставить на дно кюветы под тем местом, где плавала коробочка, то равновесие нарушится, хотя вес левой части кюветы как будто бы не изменился. Объясните ошибку рассуждений.
📝 Решение: Коробка с гирей весит столько же, сколько и вытесненная ею вода. Поэтому перемещение коробки с гирей не нарушает равновесие кюветы. Если же в левой части кюветы вынуть гирю и поставить на дно кюветы, то коробочка всплывает, освободившаяся полость заполняется водой, левая часть становится тяжелее и равновесие нарушается.
Альтернативное рассуждение: Когда гиря плавает в коробке, то коробка вытесняет объем воды, который весит как гиря + коробка. Эта вода равномерно распределяется в поле силы тяжести. Мы можем считать, что в нашем крупном тазу (кювете) только равномерно распределенная вода, масса которой равна = масса реальной воды + масса воды, равная лодке и коробке. Когда мы вытаскиваем гирю, то вода уравнивает только плавающую коробку. А вот сама гиря уже вытесняет своим объемом количество воды, которое в этом вытесненном объеме весит меньше чем гиря. И не смотря на то, что вода распределяется равномерно, гиря всё равно является локальной областью повышенной плотности, поэтому силы перестают быть скомпенсированными и кювета опрокидывается.
#механика #динамика #физика #кинематика #гидростатика #наука #science #physics #гидродинамика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM