This media is not supported in your browser
VIEW IN TELEGRAM
📊 Лучшие базы данных — и где они уместны
1. PostgreSQL — универсальная реляционная БД
→ бизнес-приложения, аналитика, геоданные (PostGIS), JSON + SQL в одном
2. SQLite — встраиваемая БД без сервера
→ мобильные приложения, локальное хранение, CLI-инструменты, тесты
3. MySQL / MariaDB — быстрые SQL-БД для веба
→ сайты, CMS, WordPress, стартапы с LAMP-стеком
4. MongoDB — документо-ориентированная NoSQL
→ JSON‑подобные данные, прототипы, быстро меняющиеся схемы
5. Redis — in-memory key-value store
→ кеширование, очереди, счётчики, real-time метрики
6. ClickHouse — колоночная аналитическая БД
→ аналитика, лог-системы, BI‑дашборды, миллиарды строк — за миллисекунды
7. Neo4j — графовая БД
→ социальные графы, связи между сущностями, рекомендации
8. TimescaleDB — time-series над PostgreSQL
→ телеметрия, мониторинг, временные ряды, IoT
9. Cassandra — масштабируемая распределённая NoSQL
→ high-availability, терабайты данных, логика без JOIN-ов
10. DuckDB — аналитика в памяти, как SQLite для данных
→ локальный OLAP, ML‑воркфлоу, быстрые data pipelines
#databases #backend #dev #sql #nosql
1. PostgreSQL — универсальная реляционная БД
→ бизнес-приложения, аналитика, геоданные (PostGIS), JSON + SQL в одном
2. SQLite — встраиваемая БД без сервера
→ мобильные приложения, локальное хранение, CLI-инструменты, тесты
3. MySQL / MariaDB — быстрые SQL-БД для веба
→ сайты, CMS, WordPress, стартапы с LAMP-стеком
4. MongoDB — документо-ориентированная NoSQL
→ JSON‑подобные данные, прототипы, быстро меняющиеся схемы
5. Redis — in-memory key-value store
→ кеширование, очереди, счётчики, real-time метрики
6. ClickHouse — колоночная аналитическая БД
→ аналитика, лог-системы, BI‑дашборды, миллиарды строк — за миллисекунды
7. Neo4j — графовая БД
→ социальные графы, связи между сущностями, рекомендации
8. TimescaleDB — time-series над PostgreSQL
→ телеметрия, мониторинг, временные ряды, IoT
9. Cassandra — масштабируемая распределённая NoSQL
→ high-availability, терабайты данных, логика без JOIN-ов
10. DuckDB — аналитика в памяти, как SQLite для данных
→ локальный OLAP, ML‑воркфлоу, быстрые data pipelines
#databases #backend #dev #sql #nosql
❤6🔥2
⚡️ Microsoft обновила собственный бесплатный курс по генеративному ИИ
В курсе видео, практика (код) и дополнительные материалы.
Пргорамма курса состоит из изучения структуры и работы LLM, тонкостям промптинга, созданию собственного приложения для генерации изображений, функционалу RAG для LLM и принципам файнтюна.
📌 А здесь мы вылудили полный список бесплатных курсов.
Для прохождения курса нужны:
- учетная запись на Azure
- доступ к api OpenAI
Разумеется, все методики и манипуляции предлагается выполнять обучающимся в экосистеме Microsoft, на их мощностях и с использованием их сервисов.
Бэкенд учебного приложения для генерации картинок - DALLE и Midjourney.
Большие надежды строить относительно курса не стоит - экосисистема Microsoft требует отдельных компетенций, но в качестве базового структурированного курса для новичков - вполне подойдет.
🖥 Курс полностью выложен на Github: https://github.com/microsoft/generative-ai-for-beginners
В курсе видео, практика (код) и дополнительные материалы.
Пргорамма курса состоит из изучения структуры и работы LLM, тонкостям промптинга, созданию собственного приложения для генерации изображений, функционалу RAG для LLM и принципам файнтюна.
📌 А здесь мы вылудили полный список бесплатных курсов.
Для прохождения курса нужны:
- учетная запись на Azure
- доступ к api OpenAI
Разумеется, все методики и манипуляции предлагается выполнять обучающимся в экосистеме Microsoft, на их мощностях и с использованием их сервисов.
Бэкенд учебного приложения для генерации картинок - DALLE и Midjourney.
Большие надежды строить относительно курса не стоит - экосисистема Microsoft требует отдельных компетенций, но в качестве базового структурированного курса для новичков - вполне подойдет.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍2
Forwarded from Machinelearning
Alibaba Group разработали HumanOmniV2, модель на базе
Qwen2.5-Omni-7B-thinker
, которая получила навык осмысления визуального контекста за счет изменения самого процесса мышления модели. Ее научили следовать строгому формату: сначала описать контекст, потом рассуждать и только затем давать ответ.Теперь, прежде чем отвечать на вопрос, модель генерирует подробное описание сцены в теге
<context>
. На этом этапе она фиксирует, кто что делает, какой фон, какие звуки слышны. Только после этого в теге <think>
она строит логическую цепочку рассуждений, связывая вопрос с собранным контекстом. И лишь в конце выдает результат в теге <answer>
.Чтобы этот подход работал, его усилили системой вознаграждений на основе RL. За точность и правильный формат модель получает стандартные награды, но были введены и две новых:
Для оценки HumanOmniV2 создали бенчмарк IntentBench (633 видео, 2689 вопросов) на основе Social-IQ 2.0, EMER и MDPE.
Его фишка в том, что вопросы требуют одновременного анализа: видеоряда (жесты, микровыражения), диалогов (тон, смысл реплик) и социального контекста (ирония, обман, скрытые намерения).
Тестовая модель обошла открытые аналоги на 3 бенчмарках:
@ai_machinelearning_big_data
#AI #ML #MMLM #HumanOmniV2 #Alibaba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥2