This media is not supported in your browser
VIEW IN TELEGRAM
🔍 Топ-5 библиотек для объяснения ML моделей
🟢 SHAP (Shapley Additive Explanations)
Один из самых популярных методов объяснения модели на основе вкладов признаков.
🟢 LIME (Local Interpretable Model-agnostic Explanations)
Модель-агностичный подход, который обучает локальную интерпретируемую модель вокруг конкретного предсказания.
🟢 Eli5 (Explain Like I’m Five)
Упрощённое объяснение сложных ML-моделей, поддержка scikit-learn, Keras и других фреймворков.
🟢 AI Explainability 360 (AIX360)
Библиотека от IBM для объяснения моделей на различных типах данных: табличных, текстовых, изображениях и временных рядах.
🟢 InterpretML
Инструмент от Microsoft, который включает как интерпретируемые «прозрачные» модели, так и объяснители для «чёрных ящиков».
Proglib Academy #буст
🟢 SHAP (Shapley Additive Explanations)
Один из самых популярных методов объяснения модели на основе вкладов признаков.
🟢 LIME (Local Interpretable Model-agnostic Explanations)
Модель-агностичный подход, который обучает локальную интерпретируемую модель вокруг конкретного предсказания.
🟢 Eli5 (Explain Like I’m Five)
Упрощённое объяснение сложных ML-моделей, поддержка scikit-learn, Keras и других фреймворков.
🟢 AI Explainability 360 (AIX360)
Библиотека от IBM для объяснения моделей на различных типах данных: табличных, текстовых, изображениях и временных рядах.
🟢 InterpretML
Инструмент от Microsoft, который включает как интерпретируемые «прозрачные» модели, так и объяснители для «чёрных ящиков».
Proglib Academy #буст
🧠 Математика для Data Science: с чего начать
Если вы хотите уверенно читать статьи, книги и документацию по Data Science, без знания математического языка не обойтись. Но с чего начать, чтобы не утонуть в формулах?
🎁 Мы запускаем серию статей, где по шагам разберем все ключевые темы: от базовых обозначений до сложных алгоритмов.
🔗 Читайте первую статью
Proglib Academy #буст
Если вы хотите уверенно читать статьи, книги и документацию по Data Science, без знания математического языка не обойтись. Но с чего начать, чтобы не утонуть в формулах?
Proglib Academy #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
Когда Django-запросы вытягивают из базы больше данных, чем нужно, это тормозит работу приложения. Чтобы ускорить выполнение и уменьшить нагрузку, можно использовать методы:
defer()
— откладывает загрузку указанных полей до их фактического использования only()
— загружает только указанные поля, остальные — по запросу exclude()
— фильтрует объекты, исключая ненужныеВ статье — практические примеры на базе веб-приложения для агентства недвижимости: как применять эти методы, чтобы получать только нужные данные и ускорять запросы.
🔗 Подробнее в статье
Proglib Academy #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
🙏1
Что выведет код?
👍 — Moscow
👾 — 12
🌚 — Saint Petersburg
😄 — 5
⚡️ — Nizhny Novgorod
Proglib Academy #междусобойчик
👍 — Moscow
😄 — 5
Proglib Academy #междусобойчик
Please open Telegram to view this post
VIEW IN TELEGRAM
🌚12👍2⚡1😁1
🔥 RFID в непростых условиях: как НЛМК отслеживает ковши с расплавленным чугуном
В металлургии счет идет на секунды: чугун остывает, оборудование простаивает, деньги улетают. Раньше НЛМК отслеживал ковши «по старинке» — звонками и рациями.
Теперь каждый ковш «умный»: система знает, где он находится, какая у него температура и куда движется. Спойлер:экономия огромная .
🦾 Иван Клестов-Надеев, главный специалист по цифровизации коксохимического, доменного и энергетического производства НЛМК, делится опытом реализации этой системы совместно со специалистами НЛМК ИТ
Proglib Academy #буст
В металлургии счет идет на секунды: чугун остывает, оборудование простаивает, деньги улетают. Раньше НЛМК отслеживал ковши «по старинке» — звонками и рациями.
Теперь каждый ковш «умный»: система знает, где он находится, какая у него температура и куда движется. Спойлер:
Proglib Academy #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1🔥1🙏1
Учить сложные темы бывает непросто, но что, если можно разбить их на простые и понятные части? Делимся мощным промптом для ChatGPT, который поможет разобраться в любом сложном аспекте Python — от асинхронности до метапрограммирования.
I need help breaking down [конкретная тема] into smaller, simpler parts that are easier to understand.
Identify the most important 20% of learnings that will help me understand 80% of the subject.
Use analogies and real-life examples to explain each concept in a relatable way.
The explanation should focus on making the topic clear and engaging while connecting it to everyday experiences or situations.
Additionally, suggest tips or questions I can use to check my understanding of the material.
— Разбивает сложную тему на ключевые 20% знаний, которые дадут 80% понимания
— Приводит аналоги и примеры из жизни (например, асинхронность как готовка в ресторане)
— Помогает проверить себя, предлагая вопросы для самопроверки
— Разобраться в
asyncio
через повседневные сценарии — Понять работу
metaclass
с аналогиями из конструкторов LEGO — Прояснить
decorators
, представив их как модульные дополнения в кафеProglib Academy #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
🙏1