Telegram Web
AI Red Team Rodmap.pdf
1.6 MB
Forwarded from Борис_ь с ml
AI-агенты и мультиагентные системы, MCP и A2A. Основные угрозы и подходы к обеспечению безопасности
#иб_для_ml

https://habr.com/ru/articles/920744/

Сначала по мотивам своего выступления писал серию постов, но вскоре достаточно разрослись, и они превратились в целую статью. Так что - приглашаю к прочтению!

Про AI-агентов, мултиагентные системы, MCP, A2A, и их безопасность - местами даже чуть углубленнее, чем в самом докладе.
Please open Telegram to view this post
VIEW IN TELEGRAM
OWASP сделал гайд для тестирования ИИ.

OWASP AI Testing Guide — это первый в своем роде комплексный фреймворк, объединяющий традиционную кибербезопасность, MLOps и принципы Responsible AI под единой методологией для тех кому интересно тестирование моделей.

Всего включает 4 домена и 32 теста:
Тестирование приложений ИИ (14 тестов)
Тестирование моделей ИИ (7 тестов)
Тестирование инфраструктуры ИИ (6 тестов)
Тестирование данных ИИ (5 тестов)

Мне понравилось что во многих случаях приводят примеры тестовых-кейсов, инструментов и проблем которые можно проэксплуатировать. Кейсы, которые приводятся - не всегда способны обойти современные механизмы защиты моделей, но этого от гайда и не требуется. Есть даже информация про тестирование на объяснимость и интерпертируемость, или блоки про тестирование поведения агентов. И в догонку большое количество доп.ссылок, полезные референсы. Загляденье.

В дополнениях привели угрозы для Responsible AI и схемы.
Часто ли мы видим интересные таксономии или хорошие документы, предназначенные для тестировщиков моделей?

Наверное нет, так как вопрос сложно прорабатываемый на самом деле. А особенно сложно найти документ, который бы описывал не только техники атаки, но и уклонения от защитных классификаторов, а также информацию для тестирования MlOps инфры.

💡Недавно я нашёл что-то похожее в репозитории Arcanum Prompt Injection Taxonomy.

Таксономия ориентирована на практическое использование. Она построена по принципу трёхуровневой классификации, отвечающей на три ключевых вопроса:

1.ЗАЧЕМ? (Attack Intents) - Какие цели преследует атакующий?
2.КАК? (Attack Techniques) - Какими методами достигаются эти цели?
3.КАК СКРЫТЬ? (Attack Evasions) - Как обойти системы обнаружения?


Такой подход при построении таксономии позволяет систематически анализировать угрозы с разных точек зрения.

Блок с интентами рассказывает о конкретных категориях мотиваций, которые может достичь атакующий – это может быть «утечка системного промпта, перечисление инструментов/API доступных к модели, а также деструктивных и социальных мотиваций для того, чтобы реализовать атаку.

Дальше – техники, тут 18 техник для реализации промпт-атак. Например, можно составлять промпт-инъекцию с множеством вложенных структур или заставить имитировать LLM роль интерпретатора или системы – всё это может быть применимо при реализации атаки или джейлбрейка из статьи/датасета, особенно если оно не работает изначально.😵

Потом, список методов уклонения от цензоров. Большой список, тут и про кодирование текста, и про сокрытие текста в emoji, фонетические замены и вымышленные языки – да, да всем этим можно сокрыть ваш промпт, чтобы обойти простой классификатор, не удивляйтесь. 😮

А также есть отдельный блок – Экосистема.

Тут приведена таблица, где описаны MLOPS решения, их известные порты, заголовки http, методы аутентификации и известные CVE(список пополняется, но не ссылками на эксплоиты). Что мне очень сильно понравилось. Где ещё найти такой лист с готовой информацией об инфре?

Есть и чек-листы для защиты, опросники, а также перечень проб – промпты которые вы можете закинуть в модель для тестирования промпт-инъекций.

Ну и самое интересное – это их майнд-карта, которая есть в репозитории с визуализацией всего что у них имеется – приложу ниже в png, в репозитории – xmind файл. В карте есть ссылки на исследования.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Arcanum PI Taxonomy.png
1.7 MB
Привет. Я не часто рекомендую полезные инструменты, которыми я пользуюсь. Но несколько месяцев назад я подался в число участников на закрытое тестирование инструмента, который теперь называется YourNews. Один из разработчиков, мой товарищ – вольтаж.

В чём была моя боль и как решил её сервис.

Большое количество источников информации, каналов и интернета – приносили полезные новости, но редко, либо они проходили мимо меня. Часто я тратил большое количество времени на ручной анализ интернета – как следствие тратил самое ценное в жизни. YourNews помог решить эту проблему.

Ребята разработали агентную систему, которая шерстит интернет и телеграм каналы, по заданным вами интересам и присылает краткую сводку в телеграм, а также можно посмотреть детали в веб-интерфейсе.

На выходе получаем интересные новости, которые были найдены, даже из источников – на которые вы не подписаны, или не учитываете. Вот она сила агентов.

Часто я делал такое через manus, но, к сожалению, он не совсем под это заточен и как следствие выдаёт результаты похуже.

А в YourNews - ребята развивают инструмент.

Что из фичей сейчас? - можно гибко задать пожелания к генерации, укажите также вашу роль – для более точного подбора в соответствии с вашими интересами, а также необходимо также указать перечень источников из телеграм каналов, а также ключевых слов. Ну и время, когда вам присылать отчёт – мне удобно в 9 утра.

Сейчас у ребят идёт закрытая бета — можно попасть в число первых пользователей, протестировать и повлиять на развитие продукта.

Для участия в бете пишите персонажу.
Ну что же, а сейчас разберём пример интересного исследования, которое подкинул мне агент, о котором я описывал выше.

Безопасность протоколов коммуникации между агентами, кажется, что только в MCP проблемы, но тут господа из Китая провели детальное исследование всех существующих (на момент написания исследования) протоколов взаимодействия между агентами и пришли к интересным выводам.

Во-первых они проанализировали 150 статьей по протоколам коммуникаций между агентами, а также по их безопасности. Выделили 3 уровня протоколов:

1.User-Agent – человек-агент
2.Agent-Agent- коммуникация между агентами
3.Agent-Environment – взаимодействие агентов с внешними системами.


Самое интересное конечно же, что они построили свою модель угроз для всех 3 уровней. Так на первом уровне расположились довольно известные нам угрозы - промпт инъекции, социотехнические атаки, извлечение данных и манипуляция контекстом.

Дальше, когда происходит коммуникация между агентами – тут выделяют угрозы, когда агенты с изначально опасной целью – нарушают консенсус, то есть цель всей агентной системы. А также внедрение ложных данных и эксплуатация доверия – буквально агент может внушить другому что-то плохое.

А уже потом – Agent-Environment, тут и атаки на цепочку поставок и влияние на API, а также внешние ресурсы. Интересно что манипуляция с API – также может повлиять на поведение агентов.

Есть и отдельный блок – Protocol Analysis. Примечательно что MCP выделяют как наиболее проработанным с точки зрения безопасности, и в правду много исследований – а сейчас ещё вышло интересное обновление – в MCP добавили защиту. Но не об этом речь.

A2A – пока что в стадии проработки с точки зрения безопасности.

Ну и что интересно, предлагают в статье и механизмы защиты – например адаптацию Zero Trust, мониторинг поведения, контролировать промпт-инъекции путём наложения файрволла, балансировщика нагрузки а также дообучения на состязательных примерах. Подробно

В скриншотах к посту - важные таблицы из статьи.

статья
Browser-ABuse agents. Исследование SquareX в очередной раз показало уязвимость AI-агентов. Но что в этом такого?

Давайте рассмотрим весь контекст. Наверное, все вы уже слышали о manus или Claude Desktop – это browser-use агенты, которые выполняют различные действия на сайтах – будь то поиск или просто сбор информации для вашего отчёта. Однако таких агентов можно отравить – и в данном случае отравление уже ведёт к хищению учётных данных.

В исследовании SquareX – авторы проверили насколько уязвим BrowserUse(фреймворк с агентами для автономного выполнения задач) к фишингу.

Они создали страницу - похожую визуально на страницу авторизации Salesforce, попросили BrowserUse найти её в гугле, сделать авторизацию и создать коммерческое предложение. Это всё лабораторные условия. На странице высвечивался фишинг, содержащий промпт инъекцию – который, к сожалению, вёл на фейковую страницу – где уже были угнаны данные. Агенты не проверяют URL на подозрительность в отличии от нас, а пользователь, который пользуется BrowserUse – не замечает кражу учётки😂.

Это, пожалуй, не единственный вектор, реализуемый в их исследовании. Они поставили задачу агенту – исследовать определённую тему, написать отчёт и найти файлообменник для отправки «коллегам». AI-агент нашёл google (креды также были изначально заданы пользователем), но как оказалось – Google Drive был фишинговым, а протокол oauth, который там был – предоставлял большое количество разрешений для пользователю – классно(нет).

Агенты не проверяют куда следуют… и конечно креды от аккаунта это не самая страшная история))). Давайте представим данные от криптокошельков или карт) тут может сработать история с переходом на поддельный магазин и угон ресурсов💰💰💰.

Будет нам, пользователям manus(в котором недавно сделали возможность хранения учётных данных для всяких делишек) - наука.

оригинальное исследование
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
2025/07/08 02:29:09
Back to Top
HTML Embed Code: