RELIABLE_ML Telegram 99
ML System Design Course 2022 - лекции
Список и краткое содержание опубликованных лекций открытого курса ODS 2022

🥳Хопа! Пока мы с вами обсуждали АБ-тесты, в ML System Design Course 2022 подъехали новые крутые лекции.

Вот список всех лекций курса на текущий момент:

1. Практическое применение машинного обучения. Делать ML-модели легко, трудно делать полезные ML-модели. В первой лекции дается определение “дизайна систем машинного обучения”, разбираются предположения ML-систем, их традиционные области применения и отличия академического и промышленного машинного обучения.

2. Основы проектирования ML-систем. Дизайн - это работа с ограничениями, и во второй лекции мы разбираем источники этих ограничений, постановку задачи, метрики и бейзлайны.

3. Обучающие данные. Машинное обучение основано на данных, и в этой лекции мы обсудим проблемы разметки и подготовки данных, проблему дисбаланса классов и сэмплирование.

4. Подготовка и отбор признаков. Задача подготовки данных - упростить обучение модели. Обсуждаем аугментацию для разных типов данных, использование синтетических данных, работу с выбросами и пропущенными значениями, масштабирование, конструирование и отбор признаков. Отдельно мы разговариваем о даталиках - данных, доступных при обучении, но недоступных при использовании модели.

5. Выбор модели, разработка и обучение модели. Сердце ML-системы - модель (или несколько моделей) машинного обучения. Нужно начинать с простого, проверять предположения модели и аккуратно сравнивать разные подходы. Обсуждаем ансамбли, распределенное обучение, гадаем по графикам лосс-функции и калибруем вероятности.

6. Оценка качества модели. Важно не только качество ML-модели, но и качество системы целиком. Обсуждаем качество интерфейса, данных и самой модели. Строим простые бейзлайны. Проверяем качество модели на пьяницах-спортсменах, тестируем модель на устойчивость и вспоминаем парадокс Симпсона. Единственная лекция, в которой есть хоть какие-то примеры кода.

7. Развертывание систем. Архитектура развертывания модели определяет, где будет работать модель, когда будет производится инференс, как модель получит запрос пользователя и как пользователь получит ответ модели. Предсказания можно делать на лету, по запросу, а можно сделать заранее и отдавать готовые по мере необходимости. Что-то лучше считать все в облаке, а что-то прямо на устройстве клиента. Можно ускорить инференс нейронной сети с помощью ONNX или ENOT.AI, раскидать нейронку на несколько GPU с помощью Accelerate и использовать оптимизированные CUDA-ядра DeepSpeed. Главное - не запутаться.

8. Диагностика ошибок и отказов ML-систем. Диагностика проблем с данными. Мониторинг. Обсуждаем естественную и отложенную разметку, прокси-метрики и петлю обратной связи. Разбираем примеры, где деньги - плохая метрика, википедию жарят, а метки зависят от временного горизонта. Рассматриваем специфичные для ML-систем отказы и ошибки, выбросы, крайние случаи, сравнение распределений, мониторинг, усталость от алертов и устройство SLA.

9. Мониторинг и обучение на потоковых данных. Шаблоны обмена данными, асинхронные взаимодействия, издатели, подписчики, Kafra, RabbitMQ, Pub/Sub - вот краткий список того, о чем невозможно рассказать в одной лекции. Но мы попробовали.

10. Жизненный цикл модели. Есть разные модели жизненного цикла ML-систем, но все они сходятся в одном - модель, скорее всего, придется неоднократно переделывать. Новые версии модели нужно будет сравнить со старыми, и решить - какие лучше. Разберем тестирование моделей на живых пользователях, data-centric подход и непрерывное переобучение моделей.

На странице курса также доступны презентации и списки рекомендованных к прочтению материалов для каждой лекции.
Всего планируется 14 лекций + 2 лекции в качестве новогоднего подарка от @Reliable ML🎄.

Не переключайтесь!

#tech #ml_system_design



tgoop.com/reliable_ml/99
Create:
Last Update:

ML System Design Course 2022 - лекции
Список и краткое содержание опубликованных лекций открытого курса ODS 2022

🥳Хопа! Пока мы с вами обсуждали АБ-тесты, в ML System Design Course 2022 подъехали новые крутые лекции.

Вот список всех лекций курса на текущий момент:

1. Практическое применение машинного обучения. Делать ML-модели легко, трудно делать полезные ML-модели. В первой лекции дается определение “дизайна систем машинного обучения”, разбираются предположения ML-систем, их традиционные области применения и отличия академического и промышленного машинного обучения.

2. Основы проектирования ML-систем. Дизайн - это работа с ограничениями, и во второй лекции мы разбираем источники этих ограничений, постановку задачи, метрики и бейзлайны.

3. Обучающие данные. Машинное обучение основано на данных, и в этой лекции мы обсудим проблемы разметки и подготовки данных, проблему дисбаланса классов и сэмплирование.

4. Подготовка и отбор признаков. Задача подготовки данных - упростить обучение модели. Обсуждаем аугментацию для разных типов данных, использование синтетических данных, работу с выбросами и пропущенными значениями, масштабирование, конструирование и отбор признаков. Отдельно мы разговариваем о даталиках - данных, доступных при обучении, но недоступных при использовании модели.

5. Выбор модели, разработка и обучение модели. Сердце ML-системы - модель (или несколько моделей) машинного обучения. Нужно начинать с простого, проверять предположения модели и аккуратно сравнивать разные подходы. Обсуждаем ансамбли, распределенное обучение, гадаем по графикам лосс-функции и калибруем вероятности.

6. Оценка качества модели. Важно не только качество ML-модели, но и качество системы целиком. Обсуждаем качество интерфейса, данных и самой модели. Строим простые бейзлайны. Проверяем качество модели на пьяницах-спортсменах, тестируем модель на устойчивость и вспоминаем парадокс Симпсона. Единственная лекция, в которой есть хоть какие-то примеры кода.

7. Развертывание систем. Архитектура развертывания модели определяет, где будет работать модель, когда будет производится инференс, как модель получит запрос пользователя и как пользователь получит ответ модели. Предсказания можно делать на лету, по запросу, а можно сделать заранее и отдавать готовые по мере необходимости. Что-то лучше считать все в облаке, а что-то прямо на устройстве клиента. Можно ускорить инференс нейронной сети с помощью ONNX или ENOT.AI, раскидать нейронку на несколько GPU с помощью Accelerate и использовать оптимизированные CUDA-ядра DeepSpeed. Главное - не запутаться.

8. Диагностика ошибок и отказов ML-систем. Диагностика проблем с данными. Мониторинг. Обсуждаем естественную и отложенную разметку, прокси-метрики и петлю обратной связи. Разбираем примеры, где деньги - плохая метрика, википедию жарят, а метки зависят от временного горизонта. Рассматриваем специфичные для ML-систем отказы и ошибки, выбросы, крайние случаи, сравнение распределений, мониторинг, усталость от алертов и устройство SLA.

9. Мониторинг и обучение на потоковых данных. Шаблоны обмена данными, асинхронные взаимодействия, издатели, подписчики, Kafra, RabbitMQ, Pub/Sub - вот краткий список того, о чем невозможно рассказать в одной лекции. Но мы попробовали.

10. Жизненный цикл модели. Есть разные модели жизненного цикла ML-систем, но все они сходятся в одном - модель, скорее всего, придется неоднократно переделывать. Новые версии модели нужно будет сравнить со старыми, и решить - какие лучше. Разберем тестирование моделей на живых пользователях, data-centric подход и непрерывное переобучение моделей.

На странице курса также доступны презентации и списки рекомендованных к прочтению материалов для каждой лекции.
Всего планируется 14 лекций + 2 лекции в качестве новогоднего подарка от @Reliable ML🎄.

Не переключайтесь!

#tech #ml_system_design

BY Reliable ML


Share with your friend now:
tgoop.com/reliable_ml/99

View MORE
Open in Telegram


Telegram News

Date: |

Other crimes that the SUCK Channel incited under Ng’s watch included using corrosive chemicals to make explosives and causing grievous bodily harm with intent. The court also found Ng responsible for calling on people to assist protesters who clashed violently with police at several universities in November 2019. Public channels are public to the internet, regardless of whether or not they are subscribed. A public channel is displayed in search results and has a short address (link). How to create a business channel on Telegram? (Tutorial) Telegram Channels requirements & features In the “Bear Market Screaming Therapy Group” on Telegram, members are only allowed to post voice notes of themselves screaming. Anything else will result in an instant ban from the group, which currently has about 75 members.
from us


Telegram Reliable ML
FROM American