Telegram Web
🙏 Разработки грантополучателей на IV Конгрессе молодых ученых

В период с 27 по 29 ноября в «Научной гостиной» можно было увидеть промежуточные результаты работы грантополучателей РНФ.

Здесь свои проекты представили молодые ученые — Александр Гостев, Елена Назарова, Андрей Блинов и Ольга Парфенова.

Среди разработок:
🔬 Программно-аппаратный комплекс для УЗИ-датчика, который может изменить подход к диагностике
🌿 Оптически активные индикаторы для умной упаковки, способные отслеживать свежесть продуктов
☀️ Миниатюрные солнечные батареи нового поколения
🥛 И даже кисломолочные напитки с витаминами и антиоксидантами

Эти проекты — результат фундаментальных исследований, которые уже сегодня находят воплощение в реальных приборах. С дальнейшей доработкой они могут быть внедрены в промышленность и повседневную жизнь.

Все проекты грантополучателей Фонда доступны на сайте в разделе «Поиск проектов».

➡️ Подробнее о проектах, представленных на Конгрессе — в наших карточках

#новости_фонда
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🧲Ученые из Института общей и неорганической химии имени Н.С. Курнакова (РАН) совместно с коллегами из ФИАН и Курчатовского института разработали магниточувствительные материалы на основе арсенида кадмия с добавлением хрома. Эти материалы перспективны для создания устройств магнитной памяти, сенсоров и микроэлектроники нового поколения.

➡️Ход исследования
Ученые синтезировали материалы, добавив хром в арсенид кадмия в концентрациях от 1 до 6% и сплавив их при температуре 740°C. Анализ химического состава и микроструктуры показал, что в результате образовались три фазы:
🟠Арсенид кадмия — 96,4% сплава.
🟠Арсенид хрома — 1,6%.
🟠Кадмий — 2%, который формирует отдельные светлые вкрапления.

Микроскопический анализ подтвердил, что предел «растворимости» кадмия в материале крайне низок — менее 0,1%.

➡️ Основные результаты
🟠Точная настройка свойств. Состав и структура позволяют регулировать магнитные характеристики для различных приложений.
🟠Прогнозируемые фазы. Данные о фазовых равновесиях помогут создавать материалы с заданными свойствами.
🟠Практическая применимость. Материалы перспективны для магнитной памяти, сенсоров и микроэлектронных устройств.

Полученные результаты открывают путь к разработке энергоэффективных устройств, работающих на основе спин-управляемых структур.

Исследование опубликовано в журнале Vacuum.

📰 Подробности — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🧬 Хотите улучшить свои навыки работы с научным оборудованием и стать настоящим экспертом в своем деле? Тогда проект «ЛабИнфо» — для вас!

На IV Конгрессе молодых ученых представили видеогид «ЛабИнфо», который помогает молодым исследователям изучить базовые и продвинутые приборы, используемые в лабораториях. Проект создан РНФ и Сколтехом при участии вузов-партнеров — СПбГУ, УрФУ, РХТУ, ТГУ и ЮФУ. В ноябре «ЛабИнфо» вошел в инициативу Десятилетия науки и технологий «Решения и сервисы для профессионального сообщества».

🪅Что такое «ЛабИнфо»?
🪅База из более 40 видеороликов о лабораторном оборудовании и ПО, которая регулярно пополняется
🪅Простые и наглядные объяснения работы ключевых приборов
🪅Регулярная обратная связь и ответы на ваши вопросы

🪅Что дает этот проект?
🔘Быстрый старт для новичков в науке.
🔘Готовые инструкции по работе с оборудованием, которое есть почти в каждой лаборатории.

💙 Все видеоуроки по работе с лабораторным оборудованием доступны в сообществе проекта «ЛабИнфо» в ВКонтакте: https://vk.com/labinfo

Присоединяйтесь!

📲 Если вы хотите делиться своими знаниями и принять участие в записи видеоинструкции, отправьте запрос по адресу [email protected] с темой письма «ЛабИнфо» или в сообщениях группы в ВКонтакте

#новости_фонда
Please open Telegram to view this post
VIEW IN TELEGRAM
💬 Интервью с Андреем Блиновым на IV Конгрессе молодых ученых

В завершающий день Конгресса в «Научной гостиной» Андрей Блинов рассказал о системе грантовой поддержки Фонда, особенностях конкурсных процедур, Школе РНФ, а также представил возможности для молодых исследователей.

💙 Запись интервью доступна в группе РНФ в ВКонтакте по ссылке

Тайм-коды 🔽
0:25 - Увеличение размера гранта РНФ
2:20 - Конкурсы для молодых ученых: перспективы
5:00 - Участие молодых ученых в конкурсах прикладных проектов РНФ
10:20 - О пути к гранту РНФ
13:40 - Школа РНФ: зачем она нужна и насколько эффективна
20:40 - Популяризация: зачем ученым представлять свои результаты обществу
22:40 - Презентация юбилейной книги РНФ

🎙️Интервью взяла Ирина Алексеенко, к.б.н., заведующая группой генной иммуноонкотерапии ИБХ РАН, заместитель директора Московского центра инновационных технологий в здравоохранении

#новости_фонда
Please open Telegram to view this post
VIEW IN TELEGRAM
🛰️ Ученые из Института металлургии и материаловедения имени А.А. Байкова (РАН) совместно с коллегами из МГУ, Сеченовского университета и других научных центров впервые синтезировали 3D-аналоги костной ткани в условиях микрогравитации на борту Международной космической станции. Эти материалы перспективны для регенерации костей как на Земле, так и в длительных космических миссиях.

➡️ Ход исследования
Для синтеза материалов использовался магнитный биоассемблер — устройство, позволяющее формировать ткани под действием магнитных полей.

Процесс проходил в два этапа:
1️⃣ Подготовка образцов:
🟣В биоассемблер загрузили раствор фосфата кальция — биосовместимого вещества, химически близкого к костной ткани.
🟣Эксперименты проводились параллельно на МКС (микрогравитация) и на Земле (гравитация присутствует).

2️⃣ Синтез ткани:
🟣В обоих случаях за 48 часов сформировались 3D-аналоги костной тканиразмером ~5 мм.
🟣Образцы доставили на Землю для анализа.

Анализ структуры показал, что микрогравитация существенно улучшает свойства материала: кристаллы фосфата кальция на МКС росли равномерно, образуя упорядоченную структуру.

➡️ Основные результаты
🟣Упорядоченная структура. Образцы с МКС имеют более однородную кристаллическую структуру, что способствует лучшей адгезии клеток.
🟣Ускоренное заживление. Доклинические испытания на крысах показали, что «космические» материалы стимулируют более активное восстановление костной ткани по сравнению с земными аналогами.
🟣Перспективы применения. Разработанные материалы могут использоваться как в медицине на Земле (хирургия, стоматология), так и для лечения травм в космосе.

✔️ Полученные результаты подтверждают преимущества микрогравитации для создания биоматериалов нового поколения.

Исследование опубликовано в журнале Biomedical Technology.

📰 Подробнее — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
Уважаемые грантополучатели!

Информируем, что подача научных отчетов доступна только в новой ИАС: ias.rscf.ru

🌐Для входа в систему рекомендуем использовать Яндекс-браузер

Согласно ГК РФ, последний день представления отчета — 16 декабря 2024 года
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🙏 С 27 по 29 ноября в Научно-технологическом университете «Сириус» проходил ежегодный Конгресс молодых ученых — ключевое событие 2024 года программы Десятилетия науки и технологий. В рамках конгресса была организована Школа РНФ.

За три дня более тысячи молодых ученых встретились с руководством Фонда на семинарах и сессиях, узнали об инструментах продвижения научных результатов и механизмах экспертизы проектов, рассказали о своих исследованиях, а также представили собственные разработки в выставочном пространстве. 

📌Собрали для вас ссылки на записи прошедших мероприятий Деловой программы Школы РНФ:
🟣Семинар «Грантовая поддержка РНФ»
🟣Семинар «Научная экспертиза проектов»
🟣Семинар «Механика отбора и поддержки прикладных проектов в РНФ»
🟣Мастер-класс «Научная коммуникация»
🟣Открытый микрофон с заместителем генерального директора РНФ Андреем Блиновым

Видеозаписи также доступны на сайте Конгресса

⬇️ Об итогах Школы РНФ на IV Конгрессе молодых ученых читайте на нашем сайте

#новости_фонда
Please open Telegram to view this post
VIEW IN TELEGRAM
🐟 Ученые из Донского государственного технического университета и Южного федерального университета выяснили, как добавки на основе бактерий Bacillus могут улучшить здоровье и рост клариевого сома. Результаты исследования открывают новые возможности для повышения продуктивности аквакультуры.

➡️Ход исследования
В качестве пробиотиков исследователи использовали три штамма бактерий: Bacillus subtilis R1, Bacillus subtilis R4 и Bacillus velezensis R5, изолированных из кишечника здоровых клариевых сомов. Эти бактерии обрабатывали соевыми бобами, а затем измельченные бобы добавляли в рацион рыб.

Эксперимент проводился на 50 молодых сомах (25 — в контрольной группе и 25 — с пробиотиками). Рыб взвешивали с интервалом в 12 дней на протяжении почти двух месяцев.

➡️ Основные результаты
🟠Увеличение массы. Рыбы, получавшие пробиотики, показали прирост массы на 25–29% по сравнению с контрольной группой. Наибольший эффект наблюдался у рыб, кормленных добавками с Bacillus velezensis R5 — их масса увеличилась на 29%.
🟠Иммунный ответ. Пробиотики активировали гены, отвечающие за устойчивость к стрессу, в тканях рыбы. Активность этих генов увеличивалась в мозге, печени, жабрах и мышцах в 2–46 раз в зависимости от органа и штамма бактерий. Это свидетельствует о значительном иммуностимулирующем эффекте.

Применение пробиотиков может ускорить рост клариевого сома, повысить его устойчивость к болезням и стрессу, снизить смертность и улучшить показатели аквакультуры в целом. Это поможет снизить издержки на выращивание рыбы и повысить эффективность производства.

Исследование опубликовано в журнале Fishes.

📰 Подробности — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
Публикуем 💥💥💥💥 «Открывай с РНФ»

Финальный выпуск 2024 года посвящен итогам Десятилетия с момента основания Фонда

📚 Из дайджеста вы узнаете:

🟠о последних результатах научных исследований грантополучателей Фонда: костном цементе, хорошо заметном на снимках томографов, методике датировки артефактов с помощью угля и многих других;
🟠о ключевых итогах Десятилетия РНФ: Всероссийской конференции «Научные мосты», масштабном лектории «10 лет с РНФ», экспозиции Фонда на Фестивале НАУКА 0+, Школе РНФ и других событиях из жизни Фонда.

➡️В рубрике «Интервью» к.б.н., руководитель группы генной иммуноонкотерапии ИБХ РАН, заместитель директора Московского центра инновационных технологий в здравоохранении Ирина Алексеенко рассказывает о разработанном препарате от рака и необходимости поддержки прикладных исследований.

➡️Рубрика «Фоторепортаж» познакомит читателей с четырьмя лабораториями Института космических исследований (ИКИ) РАН, где рождаются передовые технологии, и с учеными, для которых космос — не просто объект исследований, а вызов, вдохновение и страсть.

📎Скачать веб-версию: https://clck.ru/3FBh3G

Приятного чтения! ❤️

#новости_фонда #дайджестРНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🎨 Вновь рассказываем об эстетической стороне исследований в фотопроекте «Цвета науки»

🌌 Сегодняшний цвет — «галактический зеленый», на который нас вдохновило исследование ученых из Института астрономии РАН и САО РАН.

🟢В работе была изучена пространственная структура трех областей ионизованного водорода в спиральном рукаве Персея.

💨В одном из них были найдены свидетельства звездного ветра. На небе эти области видны как светлые туманности разнообразной формы.

🟢Астрономы не могут поставить над своими объектами эксперименты — изучая межзвездную среду в картинной плоскости неба, они вынуждены искать способы восстановления трехмерной структуры межзвездного вещества.

🟢В будущем авторы создадут атлас ярких ионизованных областей северного неба, а также оценят вклад звездного ветра в процесс образования туманностей.

🟢Исследование, поддержанное РНФ, поможет изучить многообразие проявлений межзвездной среды, влияющих на образование новых светил.

📸 Автор фото: Мария Кирсанова

#цвета_науки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
💊 Химики из Института химии растворов имени Г.А. Крестова РАН нашли способ повысить растворимость лекарства для снижения давления телмисартана в 20 раз.

Это открытие может снизить риск побочных эффектов и сделать лечение сердечно-сосудистых заболеваний более эффективным.

➡️ Ход исследования
Телмисартан плохо растворяется в воде, что усложняет его всасывание и требует высоких доз. Чтобы решить эту проблему, ученые использовали циклодекстрин — молекулу, образующую кольцо с полостью, куда поместили молекулу телмисартана.

Были применены два метода:
💗Перемол телмисартана с циклодекстрином.
💗Растворение в этаноле с последующей сушкой.

Растворимость полученных комплексов проверяли в условиях, имитирующих плазму крови, при температуре от 20 до 40°C.

➡️Основные результаты
💙Повышение растворимости. Комплекс телмисартана с циклодекстрином растворяется в 20 раз лучше чистого препарата при температуре тела человека.
💙Ускоренное действие. Благодаря лучшей растворимости лекарство быстрее всасывается, что сокращает время до начала терапевтического эффекта.
💙Метод перемола. Этот способ оказался более эффективным, обеспечив лучшее взаимодействие между молекулами лекарства и циклодекстрином.

Новая форма телмисартана позволяет использовать более низкие дозы, снижая риск таких побочных эффектов, как инфекции, проблемы с почками и отеки. Методы, примененные в исследовании, можно адаптировать для других плохо растворимых лекарств, что открывает перспективы для создания более безопасных и доступных препаратов.

Исследование опубликовано в журнале Colloids and Surfaces A: Physicochemical and Engineering Aspects

📰 Подробнее — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
О самых интересных открытиях российских ученых за неделю по версии Минобрнауки России, РАН и РНФ

Биотехнологии. Впервые в мире в условиях космической микрогравитации на борту российского сегмента МКС создали трехмерные аналоги костной ткани. Оказалось, что микрогравитация положительно влияет на свойства материала: по сравнению с земными, образцы с МКС имеют более упорядоченную кристаллическую структуру.

Химия. Исследователи из ИОНХ РАН и ИТЭБ РАН впервые получили неорганические аналоги природных энзимов на основе наночастиц диоксида церия и яблочной кислоты. Полученные соединения открывают новые возможности для разработки биосовместимых неорганических наноматериалов с регулируемыми про- и антиоксидантными свойствами.

Астрономия. Ученые ГЕОХИ РАН предложили новый способ удаленных поисков воды на безатмосферных телах Солнечной системы. В качестве маркеров наличия или отсутствия воды они использовали инфракрасные спектры отражения оливина — одного из породообразующих минералов каменных планет.

Биология. Сотрудники Института биологии КарНЦ РАН исследовали влияние освещения на урожайность и пищевую ценность сельскохозяйственных культур. Авторы установили, что удлиненные циклы «свет/темнота» повышают эффективность использования света по сравнению с обычным фотопериодом. Это поможет снизить себестоимость сельхозпродукции.

Биология. Ученые из Института молекулярной биологии им. В.А. Энгельгардта РАН с коллегами описали новый механизм запуска программируемой клеточной гибели. Они выяснили, что инициировать апоптоз может белок р62, который отвечает за разрушение и удаление «лишних» белков из клетки.

Физика. Самую большую в мире камеру для исследования взрыва на источнике синхротронного излучения изготовили для экспериментальной станции «Быстропротекающие процессы» ЦКП «Сибирский кольцевой источник фотонов» (СКИФ) — проекта класса «мегасайенс» с синхротроном поколения 4+, который строится в новосибирском наукограде Кольцово.
💎 Начинаем новую неделю с результатов исследования волоконных лазеров

Ученые из МФТИ, ИОФ РАН и МГТУ им. Н.Э. Баумана разработали способ упорядоченной самосборки углеродных нанотрубок, который повышает эффективность лазеров для диагностики заболеваний.

Эта технология увеличивает мощность ультракоротких импульсов на 30% и снижает шумы в лазерном излучении на 25–40%.

➡️Ход исследования
Современные лазеры, используемые для получения высокоточных изображений тканей и органов, сталкиваются с проблемой шумов, что усложняет диагностику. Чтобы решить эту задачу, ученые разработали метод самосборки углеродных нанотрубок:

🟠Нанотрубки смешали с холатом натрия (солью желчной кислоты) и подвергли ультразвуковой обработке.
🟠После медленного высушивания в течение 2–3 суток нанотрубки упорядоченно самособрались в пленки.
🟠Контрольные образцы с хаотичным расположением нанотрубок использовались для сравнительных экспериментов.

Созданные пленки были интегрированы в лазеры и протестированы как фильтры излучения.

➡️ Основные результаты
🔘Эффективность излучения. Лазеры с упорядоченными нанотрубками преобразуют энергию в ультракороткие импульсы на 30% лучше.
🔘Стабильность импульсов. Шумы в излучении уменьшились на 25–40%, что позволило получить более четкие и точные изображения.
🔘Долговечность. Пленки не теряли своих свойств даже после многократного использования.

Новый метод поможет улучшить качество волоконных лазеров и расширить их применение в науке, промышленности и медицине, где необходимы высокая точность рабочих параметров, надежность эксплуатации и стабильность основных характеристик излучения.

Результаты исследования опубликованы в журнале Carbon

📰 Подробнее — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
🔬Ученые из Южного федерального университета, ФИЦ химической физики и медицинской химии РАН, а также Северо-Кавказского федерального университета синтезировали 12 новых спиропиранов — органических соединений с регулируемыми свойствами свечения и токсичности.

Это открытие открывает путь к более точной диагностике и эффективному лечению заболеваний.

➡️ Ход исследования
Спиропираны — это молекулы, которые излучают свет в ближнем инфракрасном диапазоне (700+ нм), что делает их идеальными для работы в глубине живых тканей.

В ходе исследования ученые:
🔘Синтезировали 12 новых молекул спиропиранов с разными заместителями и анионами (йодиды, перхлораты, тетрафторбораты).
🔘Изучили их оптические свойства, установив, что все соединения флуоресцируют в диапазоне биологического «окна» (600-1000 нм).
🔘Провели тесты на токсичность, исследуя влияние на бактерии Escherichia coli и Acinetobacter calcoaceticus

➡️ Основные результаты
🔘Флуоресценция. Наибольшую яркость показали фторзамещенные соединения.
🔘Токсичность. Йодидные спиропираны подавляют рост бактериальных клеток и биопленок, что делает их перспективными для борьбы с инфекциями и раковыми клетками.
🔘Безопасность. Перхлоратные и тетрафторборатные соединения подходят для окрашивания живых тканей без повреждений.

Новый подход позволяет управлять свойствами красителей, адаптируя их для конкретных задач: от визуализации биологических процессов до уничтожения патогенов.

Результаты опубликованы в журнале ChemBioChem.

📰 Подробнее — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
✍️Церемония подписания соглашения о сотрудничестве между Российским научным фондом и Фондом Росконгресс

Сегодня в 15:00 состоится Церемония подписания соглашения о сотрудничестве между Российским научным фондом и Фондом Росконгресс.

Соглашение направлено на расширение сотрудничества в части экспертного сопровождения мероприятий, популяризации научных результатов ведущих отечественных ученых и разработчиков, а также их привлечения к участию в ключевых событиях и встречах.

Участники:
▪️помощник Президента Российской Федерации, председатель Попечительского совета РНФ Андрей Фурсенко;
▪️председатель правления, директор Фонда Росконгресс Александр Стуглев;
▪️генеральный директор Российского научного фонда Владимир Беспалов.

▶️ Посмотреть прямую трансляцию можно по ссылке

#новости_фонда
Please open Telegram to view this post
VIEW IN TELEGRAM
✍️Церемония начинается
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
2025/01/04 14:44:08
Back to Top
HTML Embed Code: