Мемотред в честь пятницы и в честь того, что у меня появился Shrurby! (Первое фото) #шитпост
🌸Deep Research Agents: обзор 🌸
#nlp #про_nlp #nlp_papers
Вышла неплохая обзорная статья про пересечение Deep Research и агентов — Deep Research Agents: A Systematic Examination And Roadmap.
Авторы определяют Deep Research агентов как AI-агенты на базе LLM, объединяющие динамически адаптивные рассуждения, способность к планированию, многошаговый внешний поиск и извлечение знаний и использование инструментов (tools, function calling), а также генерацию комплексных аналитических отчетов для информационно-исследовательских задач.
Приводится подробный анализ работ по теме
— Chain-of-thought, Reasoning
— Tool use, MCP
— Планирование в LLM
— GPRO, PPO, Reinforce++ и как их готовить
Отдельно способность к Deep Research сравнивают на примере бенчмарка GAIA (на нем оцениваются практически все работы).
Открытые вопросы и задачи, которые стоят перед исследователями в 2025:
— Расширение источников информации — когда информации хватит для отчета? Когда и где искать, когда ее недостаточно?
— Fact Checking и информация, меняющаяся во времени
— Асинхронность в выполнении задач и этапов плана у агентов
— Адекватная интеграция reasoning и вывода из внешних тулзов
— Мультиагентные архитектуры и автономное развитие систем с онлайн-RL
Нашу статью MLGym процитировали, опять же!🥹
🟣 Статья
🟣 GitHub
#nlp #про_nlp #nlp_papers
Вышла неплохая обзорная статья про пересечение Deep Research и агентов — Deep Research Agents: A Systematic Examination And Roadmap.
Авторы определяют Deep Research агентов как AI-агенты на базе LLM, объединяющие динамически адаптивные рассуждения, способность к планированию, многошаговый внешний поиск и извлечение знаний и использование инструментов (tools, function calling), а также генерацию комплексных аналитических отчетов для информационно-исследовательских задач.
Приводится подробный анализ работ по теме
— Chain-of-thought, Reasoning
— Tool use, MCP
— Планирование в LLM
— GPRO, PPO, Reinforce++ и как их готовить
Отдельно способность к Deep Research сравнивают на примере бенчмарка GAIA (на нем оцениваются практически все работы).
Открытые вопросы и задачи, которые стоят перед исследователями в 2025:
— Расширение источников информации — когда информации хватит для отчета? Когда и где искать, когда ее недостаточно?
— Fact Checking и информация, меняющаяся во времени
— Асинхронность в выполнении задач и этапов плана у агентов
— Адекватная интеграция reasoning и вывода из внешних тулзов
— Мультиагентные архитектуры и автономное развитие систем с онлайн-RL
Нашу статью MLGym процитировали, опять же!
Please open Telegram to view this post
VIEW IN TELEGRAM
🌸Вакансия: PhD по креативности LLM 🌸
#nlp #про_nlp
TL;DR
Открыта позиция PhD-студента в UMass Lowell у Анны Румшиски (Anna Rumshisky) в Text Machine Lab.
Детали:
Позиция PhD-студента с широким спектром тем в LLM: можно будет заниматься разными методами работы с языковыми моделями, от interpretability и prompt-инжиниринга до методов alignment'а, мультимодального тюнинга, low-rank training и PEFT. Основное направление — усиление креативности у LLM.
Глава лаборатории (Text Machine Lab): Prof. Anna Rumshisky, professor of computer science в UMass Lowell, MIT и Amazon AGI; в частности, один из соавторов Amazon Nova и первой статьи по бертологии.
Требования: релевантный бакалавриат + магистратура/специалитет, хорошее понимание линейной алгебры, мат анализа и теории вероятности, базовые знания deep learning и NLP. Публикации (включая воркшопы) приветствуются, но не являются обязательным требованием.
Позиция fully funded: обучение полностью покрывается, также выплачивается стипендия, достаточная для проживания в Массачусетсе.
🟣 Для подписчиков этого канала: для подачи отправьте CV и короткое cover letter сюда: https://forms.gle/YYUhLcPtUNdjvJsY7
Дедлайн — 15 июля!
(От себя: чем раньше вы напишете, тем лучше. Я сама когда-то подавалась к Анне, но потом решила в США не ехать и осталась работать в Сбере. Для кавера можно сразу написать свои идеи, но лучше хорошо показать свой релевантный бэкграунд, опыт экспериментов, статьи)
🟣 Сайт лаборатории https://text-machine.cs.uml.edu/lab2/
🟣 Форма для подачи https://forms.gle/YYUhLcPtUNdjvJsY7
#nlp #про_nlp
TL;DR
Открыта позиция PhD-студента в UMass Lowell у Анны Румшиски (Anna Rumshisky) в Text Machine Lab.
Детали:
Позиция PhD-студента с широким спектром тем в LLM: можно будет заниматься разными методами работы с языковыми моделями, от interpretability и prompt-инжиниринга до методов alignment'а, мультимодального тюнинга, low-rank training и PEFT. Основное направление — усиление креативности у LLM.
Глава лаборатории (Text Machine Lab): Prof. Anna Rumshisky, professor of computer science в UMass Lowell, MIT и Amazon AGI; в частности, один из соавторов Amazon Nova и первой статьи по бертологии.
Требования: релевантный бакалавриат + магистратура/специалитет, хорошее понимание линейной алгебры, мат анализа и теории вероятности, базовые знания deep learning и NLP. Публикации (включая воркшопы) приветствуются, но не являются обязательным требованием.
Позиция fully funded: обучение полностью покрывается, также выплачивается стипендия, достаточная для проживания в Массачусетсе.
Дедлайн — 15 июля!
(От себя: чем раньше вы напишете, тем лучше. Я сама когда-то подавалась к Анне, но потом решила в США не ехать и осталась работать в Сбере. Для кавера можно сразу написать свои идеи, но лучше хорошо показать свой релевантный бэкграунд, опыт экспериментов, статьи)
Please open Telegram to view this post
VIEW IN TELEGRAM
Google
Anna Rumshisky
UMass Lowell / Amazon AGI Foundations - Cited by 7,942 - Natural Language Processing - Artificial Intelligence - Deep Learning - Machine Learning
Чтобы все оставшиеся сотрудники успели пройти интервью к нам 😈
#шитпост
https://futurism.com/openai-shutting-down-week
#шитпост
https://futurism.com/openai-shutting-down-week
Please open Telegram to view this post
VIEW IN TELEGRAM
Futurism
OpenAI Is Shutting Down for a Week
In a bid to retain its staffers amid a Meta poaching spree, OpenAI is giving them a mandatory week-long vacation.
🌸Спидраним NanoGPT агентами: новый бенчмарк🌸
#nlp #про_nlp #nlp_papers
На днях мы с коллегами опубликовали новую статью и бенчмарк для агентов, сделанный на основе NanoGPT speedrun от Карпаты:
The Automated LLM Speedrunning Benchmark: Reproducing NanoGPT Improvements
NanoGPT speedrun — это открытый репозиторий, где сообщество соревнуется в оптимизации обучения мини-GPT2 модели. Бейзлайн — llm.c от Карпаты, написанный в рамках туториала на чистой C/CUDA.
У спидрана Карпаты есть публичный лидерборд с историей рекордов, кратким описанием изменений и кодом (сейчас их 21).
Все это делает его идеальным исходником для оценки агентов: смогут ли они воспроизвести и улучшить результаты?
🌸Дизайн бенчмарка:
В бенчмарке две основные группы задач:
🟣 воспроизводимость — агенту нужно воспроизвести рекорд R+1, когда рекорд R дается в качестве бейзлайна для итерирования, со всей информацией об основных нововведениях.
🟣 оптимизация — агенту нужно улучшить бейзлайн R, но безо всяких подсказок. Основная метрика — нормализованное улучшение рантайма обучения в среднем по всем попыткам.
Scaffold агента ученого реализует цикл экспериментирования, состоящий из нескольких этапов:
Можно использовать агентов с любыми скаффолдами, но в рамках работы мы продемонстрировали результаты на нескольких SOTA-бейзлайнах, включая AIDE и multi-AIDE. У каждого скаффолда есть циклы решений, состояние из
1) Идеации: генерации новых идей для проверки гипотез (в нашем случае идеи предоставляются непосредственно из задачи).
2) Реализация эксперимента: кодирование экспериментов, которые проверяют идеи, полученные на этапе формирования идей.
3) Выполнение эксперимента: запуск кода
4) Анализ результатов: извлечение идей из результатов
🌸Основные итоги:
Мы провели большое количество аблейшенов с разными моделями, чтобы сравнить, как scaffold и разные типы подсказок могут повлиять на качество агента.
Лучше всего показывают себя скаффолд Multi-AIDE, полный набор подсказок из псевдокода и текстового саммари. В редких случаях, агент достигает 100% или даже 120% от существующего решения, но в большинстве случаев результат сильно ниже.
Все модели, включая топовые, со state-of-the-art scaffold, все равно испытывают трудности при воспроизведении результатов.
И даже больше, пока что существенная разница сохраняется, когда агентам дается максимально полная информация о том, что надо сделать, и псевдокод. Хорошее качество воспроизводимости — из статей, репозиториев, инструкций — должно быть пререквизитом на пути к надежной и воспроизводимой автоматизации науки агентами.
🟣 Статья https://arxiv.org/abs/2506.22419
🟣 Бенчмарк https://github.com/facebookresearch/llm-speedrunner
#nlp #про_nlp #nlp_papers
На днях мы с коллегами опубликовали новую статью и бенчмарк для агентов, сделанный на основе NanoGPT speedrun от Карпаты:
The Automated LLM Speedrunning Benchmark: Reproducing NanoGPT Improvements
NanoGPT speedrun — это открытый репозиторий, где сообщество соревнуется в оптимизации обучения мини-GPT2 модели. Бейзлайн — llm.c от Карпаты, написанный в рамках туториала на чистой C/CUDA.
У спидрана Карпаты есть публичный лидерборд с историей рекордов, кратким описанием изменений и кодом (сейчас их 21).
Все это делает его идеальным исходником для оценки агентов: смогут ли они воспроизвести и улучшить результаты?
🌸Дизайн бенчмарка:
В бенчмарке две основные группы задач:
Scaffold агента ученого реализует цикл экспериментирования, состоящий из нескольких этапов:
Можно использовать агентов с любыми скаффолдами, но в рамках работы мы продемонстрировали результаты на нескольких SOTA-бейзлайнах, включая AIDE и multi-AIDE. У каждого скаффолда есть циклы решений, состояние из
1) Идеации: генерации новых идей для проверки гипотез (в нашем случае идеи предоставляются непосредственно из задачи).
2) Реализация эксперимента: кодирование экспериментов, которые проверяют идеи, полученные на этапе формирования идей.
3) Выполнение эксперимента: запуск кода
4) Анализ результатов: извлечение идей из результатов
🌸Основные итоги:
Мы провели большое количество аблейшенов с разными моделями, чтобы сравнить, как scaffold и разные типы подсказок могут повлиять на качество агента.
Лучше всего показывают себя скаффолд Multi-AIDE, полный набор подсказок из псевдокода и текстового саммари. В редких случаях, агент достигает 100% или даже 120% от существующего решения, но в большинстве случаев результат сильно ниже.
Все модели, включая топовые, со state-of-the-art scaffold, все равно испытывают трудности при воспроизведении результатов.
И даже больше, пока что существенная разница сохраняется, когда агентам дается максимально полная информация о том, что надо сделать, и псевдокод. Хорошее качество воспроизводимости — из статей, репозиториев, инструкций — должно быть пререквизитом на пути к надежной и воспроизводимой автоматизации науки агентами.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌸SOTA на MLE-bench и новый скаффолд для ML агентов🌸
#nlp #про_nlp #nlp_papers
Выпустили статью, как мы с коллегами исследуем различные факторы у агентов в решении ML-задач: AI Research Agents for Machine Learning: Search, Exploration, and Generalization in MLE-bench
🌸TL;DR
У агентов столько вариаций, доступных тулзов, даже базовых LLM — как выбрать?
Выбирать комбинацию под задачу, в данном случае — решение ML соревнований.
Рецепт: DeepSeek, улучшенный нами AIDE с различными стратегиями поиска, оптимизированным набором операторов и тулзов — AIRA dojo (код в опенсорсе).
🌸Эксперименты
Базовая модель, скаффолд агента, набор доступных действий и тулзов и методы оценки — влияют на результат в разных комбинациях.
Оптимизировать метод поиска решения и набор действий агента под задачу — выигрышнее, чем просто тратить больше времени на поиск или тратить больше вычислительных мощностей.
Попутно сделали SOTA на MLE bench — бенчмарке OpenAI для агентов на основе Kaggle-задач. MLE bench состоит из 75 задач различной сложности, каждая в контейнере и с бейзлайном, и агентам необходимо, итерируя эксперименты, получить золото Kaggle.
Наше лучшее сочетание базовой модели, стратегии поиска и набора операторов достигает передового результата на MLE-bench lite, увеличивая вероятность получения медали на Kaggle с 39,6% до 47,7%.
Протестировали
🟣 DeepSeek R1, O1, O3
🟣 AIDE, несколько типов поиска по дереву — Greedy, MCTS, Evolutionary
🌸Краткие выводы
— мы сделали SOTA на ML-задачах без какого-либо изменения моделей, просто аккуратно написав фреймворк, который позволил проанализировать вклад в итоговое качество разных частей пайплайна, и тем самым вылечить некоторые явные боттлнеки в действиях агента и в поиске решений.
— у всех агентов все ещё наблюдается систематический оверфит: во время поиска решения агентами используется результат на валидации, а тестсет не доступен. При проверке оказывается, что лучшие, более общие решения в графе решений были, но на валидации показали себя хуже и выбраны не были.
— оптимизация операторов и поиска под задачу помогает гораздо сильнее, чем просто давать агенту бесконечное количество попыток / компьюта — качество базовых моделей все ещё неидеальное, поэтому в случае неограниченного количества попыток ваш субоптимальный агент все равно выйдет на плато.
🟣 Arxiv статья
🟣 GitHub скаффолд для ML агентов
#nlp #про_nlp #nlp_papers
Выпустили статью, как мы с коллегами исследуем различные факторы у агентов в решении ML-задач: AI Research Agents for Machine Learning: Search, Exploration, and Generalization in MLE-bench
🌸TL;DR
У агентов столько вариаций, доступных тулзов, даже базовых LLM — как выбрать?
Выбирать комбинацию под задачу, в данном случае — решение ML соревнований.
Рецепт: DeepSeek, улучшенный нами AIDE с различными стратегиями поиска, оптимизированным набором операторов и тулзов — AIRA dojo (код в опенсорсе).
🌸Эксперименты
Базовая модель, скаффолд агента, набор доступных действий и тулзов и методы оценки — влияют на результат в разных комбинациях.
Оптимизировать метод поиска решения и набор действий агента под задачу — выигрышнее, чем просто тратить больше времени на поиск или тратить больше вычислительных мощностей.
Попутно сделали SOTA на MLE bench — бенчмарке OpenAI для агентов на основе Kaggle-задач. MLE bench состоит из 75 задач различной сложности, каждая в контейнере и с бейзлайном, и агентам необходимо, итерируя эксперименты, получить золото Kaggle.
Наше лучшее сочетание базовой модели, стратегии поиска и набора операторов достигает передового результата на MLE-bench lite, увеличивая вероятность получения медали на Kaggle с 39,6% до 47,7%.
Протестировали
🌸Краткие выводы
— мы сделали SOTA на ML-задачах без какого-либо изменения моделей, просто аккуратно написав фреймворк, который позволил проанализировать вклад в итоговое качество разных частей пайплайна, и тем самым вылечить некоторые явные боттлнеки в действиях агента и в поиске решений.
— у всех агентов все ещё наблюдается систематический оверфит: во время поиска решения агентами используется результат на валидации, а тестсет не доступен. При проверке оказывается, что лучшие, более общие решения в графе решений были, но на валидации показали себя хуже и выбраны не были.
— оптимизация операторов и поиска под задачу помогает гораздо сильнее, чем просто давать агенту бесконечное количество попыток / компьюта — качество базовых моделей все ещё неидеальное, поэтому в случае неограниченного количества попыток ваш субоптимальный агент все равно выйдет на плато.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM