Telegram Web
Функция resize

Функция resize служит для изменения размера контейнеров, например вектора или deque.
Она динамически меняет количество элементов в контейнере на указанное число.

Например, для вектора numbers вызов:
numbers.resize(100);

Установит размер вектора в 100 элементов.
Если изначально элементов было меньше — новые будут инициализированы по умолчанию (нулями). Если было больше — лишние удалятся.

Также можно явно задать значение для инициализации:
numbers.resize(80, -1);

Также resize принимает вектор-шаблон для копирования значений при расширении.

#это_база
Немного про метапрограммирование и эстетическое удовольствие от type_traits

Сегодня прочитал пост Вани Ходора (бэкенд-разраб из Лавки) про type traits — небольшой гайд, который наверняка вызовет ностальгию у тех, кто когда-то лепил свои std::enable_if, is_same, remove_cvref, потому что библиотека ещё была до C++14 и приходилось всё тащить на себе.

Казалось бы, type_traits — довольно скучная часть стандартной библиотеки. Но чем больше работаешь с шаблонным кодом, тем чаще ловишь себя на том, что это не просто утилиты, а строительные блоки для архитектуры. И да, некоторые из них прямо эстетически красивые.

Из любимого — std::is_invocable, std::is_detected, std::conditional_t, std::void_t. Когда видишь, как эти трейты могут элегантно разрулить перегрузку, или сделать fallback на дефолтную реализацию без лишних ифов — это как хорошо написанная лямбда: вроде ничего особенного, а работает идеально.

Интересно, что в посте Ваня делает именно то, чего часто не хватает в серьезных разборках: он просто делится тем, что ему нравится. Это похоже на разговор с коллегой на кухне, когда ты не лекцию читаешь, а делишься любимыми инструментами.

В целом, type_traits — это, по сути, DSL на минималках. Если подходить к ним не как к синтаксическому сахару, а как к способу выразить правила типов прямо в коде — открывается совсем другой уровень выразительности. Особенно если ты пишешь свои обёртки, декораторы или generic-компоненты.

👴 Помню времена, когда std::enable_if приходилось объяснять джунам с доской и маркером. Сейчас это уже почти common sense. И это хорошо — потому что без этой базы метапрограммировать тяжело.

В общем, рекомендую почитать — вдруг тоже вспомните свои любимые трейты. А если нет — повод попробовать std::is_aggregate или std::is_trivially_copyable и посмотреть, как они могут облегчить жизнь.

Кстати, а у вас в команде кто-нибудь ещё пишет свои трейты или все уже перешли на концепты?
#вопросы_с_собеседований
Как подсчитать количество элементов в std::list?

Чтобы подсчитать количество элементов в std::list, можно использовать следующие способы:

1. Вызвать метод size() самого списка. Он вернет количество элементов.
2. Проитерировать список циклом и считать элементы.
3. Воспользоваться алгоритмом std::distance, передав ему начало и конец списка.
4. Применить алгоритм std::count_if с условием, которое всегда истинно.
spaceship operator

Spaceship operator (<=>) — это оператор сравнения, введенный в C++20.

Преимущества spaceship operator:
— Позволяет создавать типы, которые можно сравнивать с помощью одного оператора вместо нескольких (==, !=, <, > и т. д.).
— Упрощает написание функций сравнения, например std::sort.
— Читабельнее и компактнее кода с традиционными операторами сравнения.
#вопросы_с_собеседований
Что случится, если вернуть ссылку на временный объект?

Если вернуть ссылку на временный объект, созданный в стеке, то это приведет к неопределенному поведению программы.

После выхода из функции память, выделенная под временный объект, освобождается. И если где-то сохранилась ссылка на этот объект, то при попытке обратиться к нему произойдет ошибка.
Концепт IterToComparable

Концепт IterToComparable появился в стандарте C++20 и используется для проверки того, что итератор указывает на объекты, которые можно сравнивать.

Этот концепт позволяет убедиться, что можно сравнивать объекты, на которые ссылается итератор, с помощью операторов сравнения как <, <=, >, >=.

В примере используется концепт iter_to_comparable для проверки, что итератор по std::vector указывает на сравнимые объекты int. Это позволяет корректно найти минимальный элемент с помощью std::min_element.
Библиотека концепций

Библиотека концепций — это набор функций и классов, которые позволяют определять и проверять концепции. Концепция — это набор логических предикатов, которые определяют свойства типа или выражения. Концепции могут использоваться для проверки типов параметров шаблонов, определения совместимости типов и повышения безопасности и надежности кода.

Библиотека концепций была введена в стандарт C++ 20. Она основана на концепциих Boost, которые были реализованы в библиотеке Boost еще в 2005 году.

#для_продвинутых
std::thread

std::thread — это класс из стандартной библиотеки С++, который представляет собой поток выполнения. Потоки выполнения — это независимые единицы, которые могут выполняться параллельно друг с другом.

Чтобы создать поток, можно использовать конструктор класса std::thread. Конструктор принимает в качестве аргумента указатель на функцию или объект, который будет выполняться в потоке.

В примере на картинке функция foo() будет выполняться в отдельном потоке. После создания потока мы вызываем его метод join(), чтобы дождаться его завершения.

#для_начинающих
#вопросы_с_собеседований
Объясните концепцию и применение шаблонов политик в C++ и как они способствуют принципам проектирования, основанным на композиции вместо наследования


Шаблоны политик в C++ представляют собой технику проектирования, при которой поведение класса параметризуется через шаблоны. Это позволяет программистам выбирать или изменять аспекты поведения класса на этапе компиляции, вставляя разные "политики" — это могут быть классы или функции, определяющие определённые аспекты поведения. Этот подход способствует гибкости и повторному использованию кода, позволяя композицию поведения вместо жёсткого наследования. Он также помогает уменьшить связность кода и увеличивает его модульность, поскольку изменения в одной политике не влияют на другие.
input_iterator

В C++ понятие итератора используется для доступа к элементам контейнера. Итераторы могут быть разных типов, каждый из которых имеет свои собственные свойства и ограничения.

Итератор input_iterator представляет собой итератор, который может только читать значения элементов контейнера. Он не может их изменять.

Итераторы input_iterator должны удовлетворять следующим требованиям:
— Они должны поддерживать оператор *, который возвращает значение элемента, на который указывает итератор.
— Они должны поддерживать оператор ++, который перемещает итератор на следующий элемент контейнера.

#для_начинающих
std::semaphore

std::semaphore — это класс шаблона в C++ <semaphore>, представляющий собой примитив синхронизации, который позволяет контролировать доступ к совместно используемым ресурсам. В отличие от std::mutex, std::semaphore позволяет более чем одному потоку одновременно обращаться к одному и тому же ресурсу, но не более, чем указано в конструкторе.

std::semaphore имеет два основных метода:

acquire() — блокирует поток, пока значение счетчика семафора не станет ненулевым.
release() — увеличивает значение счетчика семафора на единицу.

В примере на картинке два потока пытаются получить доступ к ресурсу. Первый поток получает доступ к ресурсу, используя acquire(), и освобождает его, используя release(). Второй поток также пытается получить доступ к ресурсу, но блокируется, пока первый поток не освободит его. После того, как первый поток освободит ресурс, второй поток также сможет получить к нему доступ.

#для_продвинутых
std::sort

std::sort — это функция стандартной библиотеки C++, которая сортирует диапазон элементов. Функция принимает три параметра:

Начальный итератор — указывает на начало диапазона элементов, который необходимо отсортировать.
Конечный итератор — указывает на конец диапазона элементов, который необходимо отсортировать.
Компаратор — функция, которая определяет, какой элемент из двух меньше или равен другому.

Если компаратор не указан, то функция использует стандартную лексикографическую сортировку.

#для_продвинутых
Функция strlen()

Функция strlen() в языке программирования C++ используется для определения длины строки. Она принимает в качестве аргумента указатель на строку и возвращает значение типа size_t, которое представляет собой количество символов в строке, включая нулевой символ \0, который завершает строку.

Синтаксис функции strlen():
size_t strlen(const char* str);


Аргументы:
str — указатель на строку, длина которой должна быть определена.

Возвращаемое значение:
Количество символов в строке, включая нулевой символ \0.
std::utility

std::utility — это пространство имен в стандартном заголовочном файле <utility>, которое содержит шаблоны функций и классов, которые предоставляют различные полезные утилиты для работы с данными.

Одним из наиболее важных шаблонов в std::utility является шаблон класса pair, который представляет собой пару значений. pair может использоваться для хранения двух значений любого типа.

#для_продвинутых
std::greater

Шаблон std::greater представляет собой функциональный объект, который используется для сравнения двух объектов по возрастанию. Он является базовым классом для всех функциональных объектов, которые выполняют сравнение по возрастанию, например, std::less, std::greater_equal, std::less_equal.

Функциональный объект std::greater имеет один метод, operator(), который принимает два аргумента типа T и возвращает значение типа bool. Значение true возвращается, если первый аргумент больше второго, и значение false — в противном случае.

#для_продвинутых
Функция std::adjacent_difference()

Функция std::adjacent_difference() из библиотеки стандартных алгоритмов C++ вычисляет последовательные различия между каждым элементом и его предшественником в входном диапазоне. Результаты выводятся в диапазон назначения.

Сигнатура функции:

template <class InputIt, class OutputIt>
OutputIt adjacent_difference(InputIt first, InputIt last, OutputIt d_first);


#для_продвинутых
std::nexttoward()

Функция std::nexttoward() возвращает следующее представимое значение после x в направлении y. Эта функция ведет себя аналогично функции std::nextafter(), но с потенциально более точным y.

Функция принимает два аргумента:

x — базовое значение
y — значение, к которому приближается возвращаемое значение

Если оба аргумента равны, функция возвращает y, преобразованное к типу возвращаемого значения.

Возвращаемое значение:

Следующее представимое значение после x в направлении y.
Если x — это наибольшее конечное значение, представимое в типе, и результат бесконечен или не представим, возникает ошибка переполнения диапазона.

#для_продвинутых
#вопросы_с_собеседований
Что такое динамический анализатор кода? Какие знаете?

Динамический анализатор кода C++ - это инструмент или программное обеспечение, которое анализирует код C++ во время выполнения или исполнения.
Он выполняет различные проверки и инспекции кода для обнаружения потенциальных проблем, ошибок, утечек памяти, узких мест в производительности или других проблем во время выполнения. В отличие от статического анализа кода, который анализирует код без его выполнения, динамический анализ дает представление о поведении кода во время его выполнения.

Примеры:

Valgrind: Это мощный инструмент динамического анализа, в него входит Memcheck, который обнаруживает утечки памяти, некорректные обращения к памяти и другие ошибки, связанные с памятью.

AddressSanitizer (ASan): Это детектор ошибок памяти, встроенный в компиляторы Clang и GCC. Он обнаруживает такие ошибки памяти, как переполнение буфера, использование после освобождения и т.д. ASan проверяет код во время компиляции, внедряя проверки во время выполнения.

Dr. Memory: Это инструмент отладки памяти для Windows и Linux. Он обнаруживает такие ошибки, как утечки памяти, незаконный доступ к памяти и неинициализированное чтение памяти.

GNU Electric Fence: Это инструмент отладки, который помогает обнаружить переполнения буфера и другие ошибки, связанные с памятью. Он использует технику под названием "защитные страницы" для защиты выделения памяти и обнаружения незаконных обращений.
#вопросы_с_собеседований
Как разработать систему плагинов на С++?

Разработка системы подключаемых модулей на C++ включает в себя создание структуры, позволяющей динамическую загрузку и обнаружение подключаемых модулей во время выполнения.
Ниже приведен обзор соответствующих шагов:

1. Определите интерфейс подключаемых модулей: Этот интерфейс должен определять набор функций или классов, которые должны реализовывать подключаемые модули.

2. API для плагинов: Создайте API, который облегчает загрузку и управление подключаемыми модулями.

3. Динамическая загрузка библиотек: Используйте механизм динамической загрузки библиотек операционной системы для загрузки подключаемых модулей во время выполнения.

4. Обнаружение плагинов: Реализуйте механизм для обнаружения и регистрации доступных подключаемых модулей во время выполнения.

5. Жизненный цикл плагина: Определите жизненный цикл плагинов, включая инициализацию, настройку и очистку.

6. Связь с плагинами: Разработайте механизм связи между приложением и подключаемыми модулями. Это может быть достигнуто с помощью вызовов функций, обратных вызовов, систем событий или передачи сообщений, в зависимости от требований вашей системы плагинов.

7. Обработка ошибок: Реализуйте механизмы обработки ошибок для разрешения таких ситуаций, как неудачная загрузка плагина, несовместимые версии плагинов или ошибки времени выполнения плагинов. Это обеспечивает надежность и стабильность системы плагинов.

Стоит отметить, что разработка системы плагинов может быть сложной задачей, и есть существующие фреймворки и библиотеки, которые могут помочь упростить этот процесс. Некоторые популярные варианты в C++ включают Boost.Extension, Poco Foundation и Qt's Plugin System. Эти фреймворки предоставляют абстракции и инструменты для создания систем плагинов и могут сэкономить время и усилия разработчиков.

Не забывайте учитывать аспекты безопасности при разработке системы подключаемых модулей, поскольку загрузка внешнего кода может привести к потенциальным уязвимостям.
KISS (Keep it Simple, Stupid)

Этот принцип программирования подразумевает использование наиболее простых и понятных решений. В С++ этот принцип может быть применен в различных областях, включая проектирование алгоритмов, написание кода и дизайн классов.

При проектировании алгоритмов важно использовать простые и понятные методы, которые легко понимаются другими программистами.

При написании кода важно использовать простые и понятные функции, которые выполняют только одну операцию. Например, вместо написания одной сложной функции, которая выполняет множество операций, можно написать несколько простых функций, которые выполняют каждую операцию отдельно.

При дизайне классов важно использовать простые и понятные методы, которые выполняют только одну операцию. Например, вместо создания одного сложного класса, который выполняет множество операций, можно создать несколько простых классов, каждый из которых выполняет отдельную операцию.

*На изображении представлен класс, удовлетворяющий принципу KISS
2025/10/09 21:44:17
Back to Top
HTML Embed Code: