Telegram Web
🧠 Хитрая SQL-задача: вторая покупка в течение 7 дней

У вас есть таблица purchases:


purchases (
id SERIAL PRIMARY KEY,
customer_id INT,
purchase_date DATE,
amount NUMERIC
)


Задача:
Найти всех клиентов, у которых вторая покупка произошла не позднее, чем через 7 дней после первой.

Показать:

- customer_id
- first_purchase_date
- second_purchase_date

Решение:


WITH ordered_purchases AS (
SELECT
customer_id,
purchase_date,
ROW_NUMBER() OVER (PARTITION BY customer_id ORDER BY purchase_date) AS rn
FROM purchases
),

first_second_purchases AS (
SELECT
p1.customer_id,
p1.purchase_date AS first_purchase_date,
p2.purchase_date AS second_purchase_date
FROM ordered_purchases p1
JOIN ordered_purchases p2
ON p1.customer_id = p2.customer_id
AND p1.rn = 1
AND p2.rn = 2
)

SELECT *
FROM first_second_purchases
WHERE second_purchase_date <= first_purchase_date + INTERVAL '7 days';


🔍 Пояснение:

- ROW_NUMBER() присваивает каждой покупке порядковый номер в рамках клиента.
- Через self-join соединяем первую и вторую покупку клиента.
- Далее фильтруем, оставляя только те, у кого вторая покупка была не позднее 7 дней после первой.

⚠️ Важно:

- Клиенты с одной покупкой исключаются — у них нет второй.
- Мы не ищем любые две покупки в пределах 7 дней, а только первую и вторую по порядку.
- INTERVAL '7 days' обеспечивает корректное сравнение дат.

@sqlhub
6👍1🔥1
🔥 Дата-инженеры, встречаемся на митапе ЮMoney

Приходите на митап High SQL — он пройдёт 15 июля в 19:00 (по мск) офлайн в Санкт-Петербурге и онлайн из любой точки мира. Вот о чём поговорим со спикерами из ЮMoney и приглашённым экспертом Дмитрием Аношиным:

🟣101 Performance Tuning: невредные советы. Проверяем и анализируем самые популярные советы по оптимизации хранилищ на основе реляционных баз данных.

🟣Качество данных: от осознания до реализации. Если вы тоже сталкивались с ошибками в отчётах, дублированием данных и недоверием к аналитике, этот доклад для вас.

🟣Обзор фреймворка DBT и примеры его использования. Почему он стал таким популярным? Рассмотрим основные возможности DBT, альтернативы и как DBT используют в дата-командах.

Участие бесплатное, но нужно зарегистрироваться на сайте.
Please open Telegram to view this post
VIEW IN TELEGRAM
3🔥2🥰1
▶️ Для Claude Code выпустили фреймворк, который превращает одну нейросеть в полноценную команду ИИ-разработчиков.

Система готова из коробки и может сразу писать проекты любой сложности.

Что внутри:

• ИИ-агенты с разными ролями — один пишет код, другой проверяет, третий ищет уязвимости и передаёт задачи дальше по цепочке
• Генератор структуры проекта — помогает агентам понимать архитектуру и держать весь контекст
• Интеграция с MCP — ИИ использует только актуальные спецификации и документацию

🔧 Установка и подробности — по ссылке: https://github.com/peterkrueck/Claude-Code-Development-Kit
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥42
Как начать в Data Science, когда все вокруг уже сеньоры?

В Вышке открыт набор на онлайн-магистратуру «Магистр по наукам о данных». Поступить можно даже без технического бэкграунда, а учиться — в удобном формате.

Уже сейчас идет марафон подготовки к вступительным испытаниям, после которого вы сможете успешно поступить на программу.

За 4 встречи вы
— Разберетесь в математике
— Попрактикуетесь на задачах вступительных испытаний
— Познакомитесь с преподавателями и магистратурой
— Получите доступ в чат комьюнити

Когда: 9-14 июля, 18:00 (МСК)
Где: онлайн

📎 Зарегистрироваться и начать карьеру в DS
👍1
Forwarded from Machinelearning
🔥 Китай выпускает новую опенсорс модель: Kimi K2 — llm уровня Claude 4, которая обходит DeepSeek v3, Qwen и даже GPT-4.1

Размер — 1 триллион параметров, при этом:

📊 В бенчмарках:
- 65.8% на SWE-bench Verified, против 50.2% у Claude Sonnet 4 и 40.8% у GPT-4.1
- Лучшие результаты среди открытых моделей по кодингу, математике и агентным задачам
- Архитектура MoE на базе DeepSeek V3, 1 трлн параметров, 32B активны.

Также доступна через API:

- $0.15 за миллион входных токенов (при попадании в кэш)
- $0.60 за миллион входных токенов (если кэш не сработал)
- $2.50 за миллион выходных токенов

Почти в 5 раз дешевле, чем Claude 4 Sonnet и Gemini 2.5 Pro!

🟡 Github

@ai_machinelearning_big_data


#kimi #china #llm #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥32👎1
2025/07/13 05:55:44
Back to Top
HTML Embed Code: