⚡️ RushDB — это мгновенная база данных, построенная на базе Neo4j, не требующая моделирования, конфигураций, нормализаций данных и идеально подходит для разработки приложений, DS/ML Ops и быстрого прототипирования.
🌟 Принимает любые данные формате JSON, JSONB и CSV, и самостоятельно нормализует данные, создавая связи между данными, расставляет типы данных и лэйблы на основе передаваемых данных.
☁️ Доступна в облаке и селф-хостед.
🛠 API-first и удобные SDK для разработчиков: Python и TypeScript
🚀 Отлично подходит для стартапов, AI-команд и всех, кто работает с графами
🔐 Лицензия: Apache-2.0
🟢 GitHub
🟢 Website
📖Docs
🌟 Принимает любые данные формате JSON, JSONB и CSV, и самостоятельно нормализует данные, создавая связи между данными, расставляет типы данных и лэйблы на основе передаваемых данных.
☁️ Доступна в облаке и селф-хостед.
🛠 API-first и удобные SDK для разработчиков: Python и TypeScript
🚀 Отлично подходит для стартапов, AI-команд и всех, кто работает с графами
🔐 Лицензия: Apache-2.0
📖Docs
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8🔥5❤4
Основные возможности:
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10❤3🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
Классный сайт для тренировки навыков SQL.
На сайте размещены задачи, которые решаются через базу данных больницы.
Уровни сложности разные — от простых запросов с SELECT до по-настоящему сложных.
Берём на вооружение для практики!
https://www.sql-practice.com/
@sqlhub
На сайте размещены задачи, которые решаются через базу данных больницы.
Уровни сложности разные — от простых запросов с SELECT до по-настоящему сложных.
Берём на вооружение для практики!
https://www.sql-practice.com/
@sqlhub
👍33❤7🔥4
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4
Это самая популярная в мире библиотека обработки данных, но она медленная, и многие библиотеки значительно превзошли ее.
Проблема альтернатив Pandas в том, что никто не хочет изучать новый API.
Давайте посмотрим правде в глаза: люди не будут переносить свои проекты, га другие фреймворки, без особой причины.
Я уже давно работаю с FireDucks
Эта библиотека в разы быстрее Pandas, и вам не придется менять код старых проектов для перехода на нее.
Вы можете изменить *одну* строку кода и весь остальной код будет работать на FireDucks :
import fireducks.pandas as pd
Вы также можете запустить свой код *не* изменяя ни одной строки, используя хук:
python
$ python -mfireducks.imhook yourfile[.]py
FireDucks — это многопоточная библиотека с ускорением компилятора и полностью совместимым с pandas API.
Она быстрее, чем Polars. Ниже приведена ссылка на некоторые бенчмарки, сравнивающие Pandas, Polars и FireDucks.
FireDucks побеждает с отрывом.
⛓️Здесь находится репозиторий FireDucks на GitHub:
https://github.com/fireducks-dev/fireducks
⛓️Если вы хотите пощупать либу, откройте этот пример:
https://github.com/fireducks-dev/fireducks/tree/main/notebooks/nyc_demo
⛓️Если вы хотите сравнить FireDucks с Polars и Pandas, вот еще один блокнот:
https://github.com/fireducks-dev/fireducks/blob/main/notebooks/FireDucks_vs_Pandas_vs_Polars.ipynb
⛓️И наконец, бенчмарки, с которыми стоит ознакомиться:
https://fireducks-dev.github.io/docs/benchmarks/
@sqlhub
#fireducks #Pandas #dataanalysis #datascience #python #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
👎21🤔13👍8👏1😁1
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤3🔥3
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤2
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥24❤3👍1
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤1🔥1
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥1
#machinelearning #deeplearning
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤1
Defog Introspect
Defog Introspect позиционируется как сервис для глубокого исследования ваших данных. Он позволяет:
- Анализировать структурированные данные: Поддерживаются популярные СУБД (PostgreSQL, MySQL, SQLite, BigQuery, Redshift, Snowflake, Databricks) и файлы форматов CSV/Excel.
- Работать с неструктурированными данными: Интеграция PDF-документов, что позволяет получать дополнительные сведения из документации или отчетов.
- Выполнять поиск в интернете: Инструмент способен обращаться к веб-источникам для получения дополнительного контекста, что расширяет возможности анализа данных.
Источник:
Как это работает?
Инструмент использует "умного" AI-агента, который может:
- Преобразовывать текстовые запросы в SQL-запросы (инструмент text_to_sql), что упрощает работу с базами данных.
- Использовать веб-поиск (инструмент web_search) для поиска дополнительной информации и контекста.
- Анализировать PDF-файлы (инструмент pdf_with_citations) с возможностью цитирования источников.
Для реализации этих функций используются передовые модели, такие как:
o3-mini для преобразования текста в SQL.
gemini-2.0-flash для веб-поиска.
claude-3-7-sonnet для работы с PDF и общей оркестрации запросов.
Источник:
https://github.com/defog-ai/introspect
@sqlhub
Defog Introspect позиционируется как сервис для глубокого исследования ваших данных. Он позволяет:
- Анализировать структурированные данные: Поддерживаются популярные СУБД (PostgreSQL, MySQL, SQLite, BigQuery, Redshift, Snowflake, Databricks) и файлы форматов CSV/Excel.
- Работать с неструктурированными данными: Интеграция PDF-документов, что позволяет получать дополнительные сведения из документации или отчетов.
- Выполнять поиск в интернете: Инструмент способен обращаться к веб-источникам для получения дополнительного контекста, что расширяет возможности анализа данных.
Источник:
Как это работает?
Инструмент использует "умного" AI-агента, который может:
- Преобразовывать текстовые запросы в SQL-запросы (инструмент text_to_sql), что упрощает работу с базами данных.
- Использовать веб-поиск (инструмент web_search) для поиска дополнительной информации и контекста.
- Анализировать PDF-файлы (инструмент pdf_with_citations) с возможностью цитирования источников.
Для реализации этих функций используются передовые модели, такие как:
o3-mini для преобразования текста в SQL.
gemini-2.0-flash для веб-поиска.
claude-3-7-sonnet для работы с PDF и общей оркестрации запросов.
Источник:
https://github.com/defog-ai/introspect
@sqlhub
👍8👎2❤1🔥1
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19👎4❤2🔥1
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤1🔥1
В современном мире защиты данных крайне важно, чтобы пароли не хранились в виде обычного текста. Вместо этого используются их «закодированные отпечатки» – хеши, полученные в результате специального процесса хеширования. Это гарантирует, что даже при компрометации базы данных злоумышленник не сможет восстановить исходный пароль.
📌 Как это работает:
• При регистрации пароль проходит хеширование с применением современных алгоритмов (например, bcrypt, scrypt или Argon2), часто с добавлением уникальной соли для каждого пользователя.
• При авторизации введённый пароль снова хешируется, и полученный хеш сравнивается с тем, что хранится в базе. Совпадение означает, что введённый пароль верный.
📌 Почему так делают:
• Безопасность: Даже если база будет взломана, злоумышленник увидит лишь набор случайных символов, из которых восстановить оригинальный пароль практически невозможно.
• Секретность: Администраторы системы не имеют доступа к исходным паролям – хеши необратимы.
• Надёжность: Использование соли и, при необходимости, перца, значительно усложняет атаки с помощью радужных таблиц и повышает общую стойкость системы.
В итоге, пароли в базах данных – это не сами пароли, а их «отпечатки», которые можно сравнивать, но никак не восстановить. Этот подход напоминает замок, который открывается лишь при наличии правильного ключа, при этом сам ключ нигде не хранится.
#базыданных #безопасность #хеширование #пароли
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9👍6🔥3🥰1
This media is not supported in your browser
VIEW IN TELEGRAM
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍1🥰1