Telegram Web
Тест: как найти свой восточный язык?

Иногда сложно понять, какой язык нам ближе и нужнее. Хочется и аниме, и корейские дорамы смотреть в оригинале без субтитров, а то и отправиться в Китай или подняться на верхний этаж небоскрёба в ОАЭ.

Если вы вдруг решили изучать восточную культуру и начать с языка, но никак не можете определиться, то этот тест для вас!

📜 Поймёте, готовы ли вы к множеству иероглифов и диалектов китайского и японского.

🌳 Узнаете, в каком языке, чтобы получилось слово «лес», надо просто трижды написать «дерево» (спойлер: в японском).

🍜 Наконец, выберете, что вам ближе – корейский «тосирак», что значит «обед из дома», или гостеприимство, выраженное арабским словом «дыйафа».

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Запрограммированная сюита: взлёт и падение механического пианино на перфоленте

Продолжаем рассказывать о перфолентах. Обычно они ассоциируются с телеграммами, однако применялись и в автоматических музыкальных инструментах. Историк и сотрудник Центра непрерывного образования НИУ ВШЭ Антон Басов изучил, как появилось механическое фортепиано и при чем тут перфолента

Кратко: о чем статья?

Попытки создать автоматический музыкальный инструмент были еще в IX веке. Тогда главным компонентом таких устройств был валик с выступами, и хотя они позволяли слушать музыку без музыканта, длительность произведений была ограничена, а механизм — дорог. Перфолента позволяла решить обе эти проблемы: она могла быть достаточно длинной, а ее производство было дешевым.

Идея автоматического музыкального инструмента с перфолентой стала развиваться в середине XIX века, а первое механическое фортепиано с перфолентой под названием Pianista было изобретено в 1863 году во Франции. Однако первый настоящий успех приобрели устройства американских изобретателей Мактаммани и Галли. Основанный на их наработках аппарат органетта был переходным этапом от музыкальных шкатулок XVIII века к более совершенным устройствам. Хотя и с ограниченным нотным диапазоном, органетты могли проигрывать довольно длинные музыкальные произведения и пользовались популярностью по всему миру.

Следующим важным этапом в истории автоматических музыкальных инструментов стало появление усовершенствованной механической фисгармонии.. В это же время ученые активно работали над созданием автоматического фортепиано. Эта идея была реализована в виде пианолы — приставки к любому пианино. Однако инструмент не был полностью автоматическим и нуждался в операторе, который, как утверждалось, должен был обучаться примерно три года.

К началу XX века приставки к фортепиано стали заменяться встроенными в корпус механизмами, а новый формат перфоленты наконец стал охватывать весь нотный диапазон — 88 клавиш. В этот период изобретатели старались создать инструмент, способный не просто играть мелодию, но и воспроизводить манеру игры музыканта. Таким устройством стало Welte-Mignon. Благодаря нему сегодня мы можем послушать, как играли Григ, Дебюсси, Скрябин и многие другие.

Какие еще музыкальные инструменты были автоматизированы? Почему быстрый взлет механической музыки сменился столь же быстрым падением? Какой современный инструмент способен записывать манеру исполнения? Более подробно обо всем этом и еще одном применении перфолент, читайте в полной версии статьи.

Время чтения: 15 минут.


🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Тест: Паскуда, олух, шваль… что можно узнать о ругательствах в НКРЯ

В 2024 году Национальному корпусу русского языка исполнилось 20 лет. Им пользуются исследователи, педагоги, школьники и все те, кому интересен русский язык в самых разных видах и проявлениях. Например, благодаря НКРЯ можно посмотреть, где появляется слово: в газетах, в русской классике, в устной речи и т. д. А ещё — проследить, как менялись его значение и частота употребления от года к году.

Из нашего нового теста узнаете:

🤪 когда «конченый» стало употребляться как ругательство;

🥸 кто из русских писателей – рекордсмен по использованию слова «паскуда»;

🤡 как часто в детской литературе встречаются «дураки» (спойлер: в одном из сегментов – целых 168 раз на 11 текстов).

Пройти тест

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Горизонтальный перенос генов: ловим бактерию на плагиате

Живые организмы «списывают» друг у друга прямо из генетического кода — этот процесс улучшает их шансы на выживание и адаптацию. «Системный Блокъ» рассказывает о горизонтальном переносе генов и его роли в эволюции, а также о том, какие компьютерные алгоритмы используют биологи для поиска заимствованных фрагментов ДНК.

Кратко: о чем статья?

Обычно закодированный в ДНК план организма, геном, наследуется «по вертикали» — от предков. Однако можно получить и гены неродственных, иногда очень непохожих организмов. Такой процесс называется horizontal gene transfer (горизонтальный перенос генов, HGT) и это еще один двигатель эволюции: так распространяются полезные умения и возникают новые адаптации. Например, бактерии в стрессовых условиях могут целенаправленно захватывать чужую ДНК, чтобы найти там что-то спасительное. Растения когда-то переняли у почвенных бактерий и грибов гены для синтеза лигнина — полимера, который придает растениям прочность и формирует проводящую систему. Без него на суше не вырасти выше мха.

Биоинформатики исследуют HGT, чтобы изучить происхождение древних генов или современную эволюцию патогенов. Чтобы проанализировать горизонтальный перенос и найти плагиат, ученые используют два типа методов. Филогенетические методы сравнивают эволюционные истории разных генов, а параметрические — ищут гены, которые отличаются от остального генома частотами нуклеотидов («букв», из которых состоят ДНК и РНК) или их сочетаний.

Самый простой филогенетический метод можно реализовать с помощью инструмента BLAST: он находит в базе все похожие фрагменты и для каждой находки указывает, насколько совпадение близкое и насколько оно статистически значимо. С помощью таких подходов исследователи обнаружили, например, что бактерии в кишечнике японцев позаимствовали у морских бактерий гены для переваривания водорослей нори.

Подробнее о том, чем полезен и опасен горизонтальный перенос генов, а также о методах его изучения и их схожести с NLP, читайте в полной версии статьи.

Время чтения: 16 минут.

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Подборка материалов «Системного Блока» ко Дню учителя

5 октября в России и других странах отмечают профессиональный праздник — День учителя (World Teachers' Day). Ко Дню учителя  «Системный Блокъ» сделал подборку статей, которые будут полезны преподавателям. В этих материалах мы рассказываем о тенденциях в современном образовании и конкретных профессиональных инструментах. 

Гендерный дисбаланс в школьном образовании

По данным Министерства просвещения РФ, больше всего мужчин среди учителей ОБЖ, а самые «женские» дисциплины — русский язык и литература. Если не считать педагогов начальной школы: там учителей-мужчин всего 0,7%. О том, как эта ситуация различается в частных и государственных школах и в каких регионах преподавателей-мужчин аномально много, узнаете из нашего поста.

Цифровые технологии помогают преодолеть образовательное неравенство

По данным ООН, закрытие школ во время пандемии, сокращение и автоматизация рабочих мест негативно повлияли на равноправие женщин и мужчин. В статье мы рассказываем о том, как онлайн-образование сокращает этот разрыв. Например, цифровые технологии помогают вовлекать девочек в STEM (новый подход, в котором естественные науки, техника, инженерия и математика объединены в одну систему). А работа в EdTech (от англ. Education Technology — технологии в образовании)  становится одним из самых открытых для женщин карьерных направлений в IT.

Мотивирует ли учеников виртуальная валюта?

Геймификация — одна из тенденций современного образования. Школы и преподаватели заимствуют у игровой индустрии разные способы мотивации учащихся. Среди них — внедрение виртуальной валюты, которую ученики получают за выполнение заданий. О том, как она влияет на образовательные результаты, узнаете из нашего поста

Цифровые технологии делают образование более доступным

Каждый человек имеет право на образование, но не всем легко его получить.  Несмотря на то, что в России, как и в Европе, инклюзивное образование начало развиваться с 1960-х годов, до сих пор полностью решить проблему доступности обучения для людей с физическими или ментальными особенностями здоровья пока не удалось. Цифровые технологии позволяют ещё на один шаг приблизиться к этой цели. 
В нашем материале вы найдёте примеры успешного применения инклюзивных технологий в школах и университетах России и других стран. А ещё узнаете об адаптивных технологиях, которые подстраиваются к уровню знаний и способностей ученика. 

Как использовать дипфейки в образовании?

Ещё один инструмент для увеличения вовлечённости на занятиях — дипфейки. Это технология создания реалистичных аудио, фото и видео на основе искусственного интеллекта. При помощи дипфейков можно, например, «оживить» персонажа обсуждаемой книги или создать обучающий курс с меньшими затратами со стороны учителя. Способами применения дипфейков в образовании делимся здесь

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Большие изменения в OpenAI, долгожданное обновление голосового режима GPT, новые LLama

Рассказываем, что произошло за последнее время в мире ИИ.

Исход людей из OpenAI продолжается

25 сентября Мира Мурати, техническая директриса OpenAI, сообщила о своём увольнении. Этот пост Мира занимала шесть с половиной лет, а уход объяснила стремлением разобраться в собственных желаниях и целях.

1 октября один из сооснователей OpenAI Дёрк Кингма рассказал, что присоединился к Anthropic, главному конкуренту OpenAI. Ранее мы также писали об уходе ключевых сотрудников из компании. Таким образом, из четырёх главных лиц компании в штате остался только генеральный директор — Сэм Альтман.

Новый голосовой режим GPT и другие обновления от OpenAI

На недавней презентации для разработчиков компания объявила о запуске обновления голосового режима, благодаря которому GPT может проявлять эмоции, смеяться и петь во время беседы. Релиз обновления состоялся ещё в мае, однако из-за сложностей с правами на голос Скарлетт Йоханссон и мер безопасности обновление стало доступно только сейчас в США и Великобритании. Пользователи из Европейского союза не смогут протестировать нововведения из-за законов, регулирующих ИИ.

Также на презентации OpenAI рассказала о нескольких новых сервисах: Realtime API, который позволит генерировать аудиоответы GPT на текстовые/голосовые вопросы пользователей в реальном времени; возможность дообучать GPT на изображениях (раньше можно было только на текстах), а также дообучать их модели, используя другие (например, обучать маленькую GPT на ответах большой версии).

Новые LLama

Компания Meta* пополнила семейство моделей LLama. Теперь пользователям доступны две компактные LLM: с 1 и 3 млрд параметров. Обе модели были обучены для работы с текстами на разных языках и по качеству несущественно уступают большим версиям LLama. Благодаря своим компактным размерам модели можно использовать на мобильных устройствах.

Помимо этого были представлены две LLM, способные работать не только с текстами, но и с изображениями, в размерах 11 и 90 млрд параметров. По показателям в основных тестах модели сопоставимы с конкурентами.

Все модели доступны для скачивания и коммерческого использования, однако официально модели недоступны на территории Европейского союза.

Google обновила свои LLM

Компания Google обновила свою флагманскую LLM Gemini Pro и компактную модель Gemini Flash. Обе языковые модели теперь могут работать с более длинными текстами: Gemini Pro поддерживает 2 миллиона входных токенов против миллиона у предыдущей версии (токен — единица измерения текста), а Gemini Flash — 32 тысячи против восьми тысяч предшественника. Обновлённые модели существенно лучше в понимании текстов и изображений, а Flash стала ещё быстрее.

*Компания Meta признана экстремистской, а её деятельность запрещена на территории РФ


🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Пионеры нейросетей и глубинного обучения получили Нобелевскую премию по физике

Нобелевский комитет в Стокгольме объявил лауреатов Нобелевской премии 2024 года по физике. Ими стали «крестный отец диплернинга» Джеффри Хинтон и Джон Хопфилд, создатель нейронных «сетей Хопфилда». Оба исследователя занимались нейронными сетями с 1980-х годов. При этом нейросетевые алгоритмы десятилетиями оставались маргинальной областью машинного обучения, многие считали их тупиковым и бесперспективным направлением. Благодаря деятельности таких ученых, как Хинтон и Хопфилд, исследования нейросетей продолжались и привели к расцвету LLM в наши дни.

Хотя заслуги обоих исследователей в области искусственного интеллекта и компьютерных наук не вызывают сомнений, в научном сообществе уже идут горячие споры о том, уместно ли вручать за эти заслуги Нобелевскую премию по физике. Вероятно, решение комитета продиктовано тем, что исторически Нобелевская премия не имеет математической номинации, и физика была единственной номинацией, с которой получилось связать работу Хинтона и Хопфилда. В любом случае, мы как энтузиасты развития машинного обучения и искусственного интеллекта поздравляем всю эту область с таким признанием.

А если вам интересно, за что вообще дают “нобелевки”, где нужно родиться, в каком университете работать и до скольких лет ждать, чтобы получить признание Нобелевского комитета, то можете перечитать наше прошлогоднее дата-исследование:

https://sysblok.ru/visual/recept-nobelevskoj-premii-issleduem-otkrytye-dannye-o-laureatah/

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Все художественные тексты похожи друг на друга: как сюжетные тенденции выражаются на уровне слов 

Герой покидает дом в поисках чего-то ценного. Герой находит большую любовь в конце истории или, наоборот, трагически погибает. Таинственный незнакомец приносит вести, становящиеся фундаментом для завязки сюжета. Вы наверняка встречали такие ходы во множестве сюжетов. А как выглядит «усреднённая» история? Существуют ли слова, которые наиболее характерны для завязки или финала книги? Попробуем разобраться, используя методы цифровой гуманитаристики!

Кратко: о чем статья?

Вы наверняка слышали о формуле волшебной сказки от Владимира Проппа, четырех типах сюжетов Хорхе Борхеса или 36-ти драматических ситуациях Жоржа Польти. Все они изучали сходства сюжетов художественных произведений. 

Современные исследователи, Бен Шмидт и Дэвид Макклюр, задавались похожими вопросами, но применяли методы цифровой гуманитаристики. Мы решили последовать их примеру и изучить корпус русскоязычной художественной литературы, собранный в рамках проекта СОЦИОЛИТ, в котором можно найти тексты от Карамзина до Солженицына. 

Оказалось, что русскоязычные и англоязычные тексты очень во многом похожи: и те, и другие произведения чаще всего начинаются с описания «характеристик» героев, семейных обстоятельств и места жительства. Зато вероятность найти любовь или погибнуть заметно возрастает к концу текста. Удивительно, но даже на месте очень частотного русскоязычного «гостя» возникает англоязычный stranger. Это выглядит так, что в европейском лингвокультурном коде есть единое понимание того, что может являться завязкой сюжета и наиболее интересно читателю, а что тяготеет к драматичному финалу или развязке произведения.

Проследить за ходом исследования и посмотреть, в какой части текста чаще встречается «лошадь», а в какой – «Россия», можно благодаря полной версии материала.

Время чтения: 10 минут.

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Как делать большую науку в бесконечном бегстве: Роман Якобсон vs XX век

Сегодня день рождения Романа Якобсона — человека невероятной судьбы, одного из главных русских лингвистов XX века и настоящего гражданина мира. Постоянная вынужденная миграция не помешала Якобсону развивать фонологию, исследовать русский авангард, заниматься сербо-хорватским эпосом, изучать нейрофизиологические нарушения речи и создавать работы, которые окажут влияние на Леви-Стросса. Вспоминаем его биографию в нашей статье.

Кратко: о чем статья?

Якобсон родился в 1896 году и уже в 19 лет стал сооснователем Московского лингвистического кружка. В нём обсуждали проблемы теории и истории литературы, теории и истории языка, следили за всеми достижениями западноевропейской лингвистики.

В 1920-х годах Якобсон эмигрировал в Прагу и продолжил заниматься наукой там. В конце 1930-х, когда город был оккупирован нацистами, Якобсон пытался получить документы на выезд в Данию и писал, что хотел бы использовать месяцы в Копенгагене, чтобы закончить свою книгу о структуре и классификации фонем. В 1941 добрался до Нью-Йорка, где стал соучредителем… Нью-Йоркского лингвистического кружка. А затем преподавал в Гарвардском университете и Массачусетском технологическом институте.

Якобсон продолжал работать над исследованиями независимо от своего местоположения и проблем, которые ему преподносила история XX века. Подробнее о его работе и её обстоятельствах узнаете из полного текста материала.

Время чтения: 13 минут.

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Что изучают антропологи в интернете? Подборка материалов «Системного Блока»

Развитие интернета и цифровых технологий открыло новое поле исследований для антропологов. Учёные осознали, что в онлайн-среде формируются уникальные сообщества, культуры и практики, которые можно и нужно изучать. 

Публикуем подборку наших материалов о цифровой антропологии. Из неё вы узнаете, какие методы можно применить к исследованию интернет-пространства, как за последние 40 лет изменились интернет-интерфейсы и зачем собирать слухи в соцсетях?

Этнография в цифровую эпоху: от полей к потокам, от описаний к воздействию

Для начала погрузимся в общие проблемы цифровой антропологии и этнографии и почитаем статью профессора информационных наук Аннет Маркхам. Она специализируется на изучении цифровых пространств и предлагает исследователям новые понятия и методы для работы с онлайн-средой. Несмотря на доступность больших данных и популярность количественных исследований, она подчеркивает важность качественных методов и объясняет, как важно сохранить чувствительность к человеческим голосам и культурам в условиях цифровизации. Мы наблюдаем новые перспективы в цифровой этнографии, где традиционные подходы переплетаются с инновационными методами исследования, пишет Маркхам.

Интернет как способ существования и Big Data как угроза

Во второй части статьи профессор Аннет Маркхам углубляется в опасности, которые несет «датафикация» человеческого опыта. Хотя большие данные и полезны для анализа сложных социальных процессов, важно помнить о культурных и локализованных смыслах, которые могут ускользнуть при чрезмерном увлечении цифрами. Маркхам призывает учёных к социальной ответственности, особенно в тех случаях, когда исследователи консультируют индустрию IT. Ведь технологии могут не только улучшать, но и ограничивать нашу жизнь.

«Цифровой антрополог отличается от Data Scientist’а вниманием к деталям»


В интервью «Системному Блоку» заместитель руководителя Центра городской антропологии КБ «Стрелка» Дарья Радченко рассказывает, как пандемия COVID-19 изменила повседневные практики людей и оставила свои следы в цифровом пространстве. Используя данные из соцсетей, она показывает, как люди заново открыли для себя свои спальные районы во время самоизоляции, и размышляет над ограничениями Data Science в социальных исследованиях. 

Зачем фольклористы и социальные антропологи собирают слухи и считают репосты

В завершение подборки — интервью Александры Архиповой (признана иноагентом в РФ), в котором она раскрывает ещё одну грань цифровой антропологии — сбор слухов и исследование конспирологических теорий. Архипова объясняет, как цифровые базы данных помогают в исследовании фольклора и почему важно учитывать как количественные, так и качественные методы. Она приводит примеры из повседневной жизни: лозунги митингующих, народные рецепты лечения COVID-19 — и подчеркивает, насколько многослойными могут быть цифровые и социальные феномены. Этот материал позволяет взглянуть на антропологию через призму современной культуры и социальных изменений.

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Знаете ли вы термины машинного обучения?

Проверяем вместе с сегодняшним опросом. В коротком описании мы заменили на Х один из ключевых терминов машинного обучения. Постарайтесь догадаться, что мы здесь зашифровали, а вечером мы расскажем не только об Х, но и о четырех других важных понятиях.

Описание:


Х — это набор данных, который используется для обучения или анализа модели. Х содержит входные данные и — опционально — выходные данные, которые модель должна предсказать. В случае, когда выходные данные присутствуют, их называют разметкой, а саму Х — размеченной. 

Примеры Х с разметкой: изображения цветов и их названия, песни и их жанры, аудиодорожки и их расшифровки.

Примеры Х без разметки: списки просмотренных видео пользователей YouTube, набор текстов одного писателя.

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Какое слово мы спрятали под Х в посте выше?
Anonymous Quiz
3%
лемматизация
16%
генеральная совокупность
73%
выборка
8%
кластеризация
5 слов машинного обучения

Объясняем основные термины машинного обучения из глоссария «Системного Блока». Из первой части материала узнаете о языковых моделях, нейросетях и выборках, на которых их обучают.

Машинное обучение 

Машинное обучение — это набор методов, которые позволяют компьютеру решать задачи, не используя заранее заданный человеком алгоритм решения. Например, машинное обучение позволяет обучить компьютер отличать кошек от собак на фотографиях, хотя у компьютера нет конкретных инструкций, вроде «если есть острые уши и усы, то это кошка».

Вместо инструкций и правил компьютеру «показывают» много разных примеров с ответами. В случае с классификацией животных образцом будет изображение кошки или собаки с правильным названием объекта.

Когда компьютеру показывают примеры, он обучается извлекать из них не только все необходимые закономерности, но и информацию о том, как использовать эти закономерности для решения задачи. Машинное обучение изучает методы обучения. Набор примеров образует выборку, а результатом процесса обучения является обученная модель.

Модель

Модель — это математическое описание зависимости между входными данными и выходными. В задаче классификации кошек и собак входные данные — это изображение, а выходные данные — название животного на изображении. Другой пример: входные данные — дата, выходные данные — температура воздуха в этот день. 

Есть много способов описывать зависимости математически. Каждый способ имеет определённые свойства и подходит под определённый вид зависимости. Например, в экономике зачастую используют линейные модели, которые описывают пропорциональное изменение выходной величины (количество товара) при изменении входной величины (цены/спроса и т. д.).

Примеры других популярных моделей, помимо линейных: деревья решений, случайный лес, нейросети.

Выборка

Выборка — это набор данных, который используется для обучения или анализа модели. Она содержит входные данные и — опционально — выходные данные, которые модель должна предсказать. В случае, когда выходные данные присутствуют, их называют разметкой, а саму выборку — размеченной. 

Примеры выборок с разметкой: изображения цветов и их названия, песни и их жанры, аудиодорожки и их расшифровки.

Примеры выборок без разметки: списки просмотренных видео пользователей YouTube, набор текстов одного писателя.

Существует и более широкое определение выборки, о котором можно прочитать в другом нашем материале.

Нейросеть

Нейросеть — это один из видов моделей машинного обучения. Её отличительная черта — способность описывать самые разные зависимости, за счёт чего нейросети можно использовать в большом количестве задач.

Ещё нейросети можно дообучать на новых данных. Например, модель, которая умеет определять вид растений, можно относительно легно обучить распознавать новый вид.

Наконец, нейросети хорошо масштабируются: при правильном увеличении количества параметров и обучающих данных качество нейросети растёт.

Языковая модель

Языковая модель — модель машинного обучения, которая при данном ей контексте предсказывает для каждого слова в языке вероятность того, что оно является продолжением данного контекста. Простейший пример такой модели — это набор текста в смартфонах. 

Современные языковые модели (вроде GPT) могут не только оценивать вероятность продолжений, но и следовать инструкциям пользователя, например, кратко пересказывать текст и оценивать его эмоциональную окраску. Такие способности у модели появляются за счёт дополнительного дообучения на выборке из инструкций и соответствующих ответах. Такое обучение называют инструктивным.

Благодаря выразительной способности языка и инструктивному обучению языковые модели могут выполнять широкий спектр задач. Подробнее об этом можно узнать в нашем материале.

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Гендерное неравенство в литературе: от персонажей до писательниц

Проблема гендерного неравенства заметна во всех сферах общества — в том числе в литературе. Писательниц было традиционно меньше, чем писателей, сюжетные линии между персонажами разного пола представлены неравномерно, а гендерные стереотипы касаются и героев, и героинь произведений.

В подборке материалов «Системного Блока» мы рассказываем о роли женщин в литературном процессе и о том, почему представители обоих полов по-разному воспринимаются как авторами, так и читателями.

Толстой и Пушкин — сексисты? 

В первой части корпусного исследования мы изучали, есть ли гендерное неравенство в русской классической литературе. Вы узнаете, как описывали мужчин и женщин Толстой, Достоевский и Пушкин. Например, что женщины не только чаще «устают», но и чаще «исчезают». А еще женщины и мужчины в русской лиетратуре зачастую по-разному говорят и любят: это помогли понять прилагательные и глаголы. Подробнее – здесь

Кстати, в этом исследовании мы не рассматривали «Повести покойного Ивана Петровича Белкина» и «Капитанскую дочка», но написали про них отдельный материал.

Набоков и Булгаков — сексисты? 

Это вторая часть корпусного исследования русской классики, но более поздней: в неё вошли тексты Владимира Набокова и Михаила Булгакова. Прочитав статью, вы узнаете, насколько сильно изменилось описание мужчин и женщин в русской литературе за столетие. К примеру, мужчины у Набокова стали более эмоциональными, а женщины в романах Булгакова чаще говорят и действуют. Это что, проблески равноправия?

А что в английской литературе?

В XX веке шла усиленная борьба за права женщин, и, казалось бы, за ней должны были последовать изменения и в литературном процессе: увеличение количества авторов-женщин и более достоверная репрезентация женщин в произведениях. Однако исследователи, применив методы машинного обучения на материале английской литературы, доказали обратное. О том, всегда ли были такие тенденции в книгах на английском языке, читайте в нашем материале.

Автор или авторка: влияет ли пол автора на восприятие произведения?

Важен ли пол автора для читателя? Оказывается, да! Чем отличаются произведения авторов-женщин от произведений авторов-мужчин? Как пол читателя влияет на оценку книг, написанных женщинами? Мы кратко описали эксперименты и результаты исследования Корнелии Кулен, автора (авторки?) книги Reading beyond the female: The relationship between perception of author gender and literary quality.

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Тест: Угадайте произведение по частотным словам из Национального корпуса русского языка

С помощью НКРЯ можно выявить слова, которые чаще встречаются в каком-то одном произведении, чем во всём остальном корпусе. Некоторые из них могут быть совсем не примечательны (например, «улыбка» в «Войне и мире»), а некоторые сразу выдают текст (как «черномор» в «Руслане и Людмиле»). Мы постарались найти золотую середину и собрали для вас по пять слов из текстов школьной программы. Благодаря тесту вспомните (или узнаете):

🎁 где часто встречались «дар» и «друг»;

🪆 кто писал про «Русь» и «дрянь»;

🐸 какой классический текст можно определить по слову «лягушка»;

📚 и многое другое!

Пройти тест

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Проверяем знания по машинному обучению

Вновь предлагаем вам пройти небольшой тест. Как и в прошлый раз, в коротком описании мы заменили на Х один из терминов машинного обучения. Однако на этот раз задача посложнее: мы уже не используем базовые понятия, такие как «нейросеть» или «модель», а предлагаем проверить знания более глубокого уровня. Попробуйте догадаться, что скрывается под Х, а вечером мы расскажем не только об этом, но и о четырех новых терминах.

Описание:

Х — фактологические неверные ответы языковых моделей, ложность которых сложно распознать. Важная черта Х — правдоподобность.

Х может возникнуть из-за несовершенства обучающих данных, качество и достоверность которых могут значительно варьироваться.

Примеры Х: языковая модель может рассказать о несуществующем рассказе известного писателя, привести ложную статистику об обороте компании, дать неверный совет.

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Какое слово мы спрятали под Х в посте выше?
Anonymous Quiz
13%
эмбеддинг
8%
иллюзия
14%
заблуждение
65%
галлюцинация
Еще 5 слов машинного обучения

Объясняем еще несколько терминов машинного обучения из глоссария «Системного Блока». Из материала узнаете о недообучении, переобучении и глубинном обучении, а также о галлюцинациях и эмбеддингах.

Недообучение

Недообучение модели — обучение, которое ограничено потенциалом модели, и/или обучающей выборки, и/или самой процедурой обучения. Оно приводит к плохому качеству модели как на обучающих данных, так и на тестовых. В таких случаях говорят, что модели не хватает выразительной способности.

Недообучение случается, когда модель слишком простая, чтобы аппроксимировать зависимость. Оно также может возникнуть, если объём данных слишком велик, и у модели не хватает параметров для их обработки. Или наоборот, если данных недостаточно для качественного обучения. Недообучение также может возникнуть при неверном подборе способа настройки параметров модели или недостаточном количестве шагов обучения.

Переобучение

Переобучением модели называют обучение модели, при котором итоговая модель хорошо работает на обучающих данных, но плохо — на тестовых. В таких случаях говорят, что модель обладает низкой обобщающей способностью.

Среди причин переобучения могут быть тип модели и количество её параметров, качество и объём обучающих данных, а также неправильная настройка процедуры обучения. Например, если обучающих данных значительно меньше, чем параметров модели, существует высокая вероятность, что модель «запишет» всю обучающую выборку в свои параметры, что приведёт к нулевой ошибке на обучающих данных, но высокой на тестовых.

Чтобы избежать переобучения, применяют техники регуляризации. Например, аугментацию данных — создание новых обучающих данных на основе исходных.

Глубинное обучение

Это подобласть машинного обучения, которая занимается изучением нейросетей с большим количеством параметров. Эти нейросети представляют особый интерес, так как увеличение числа параметров значительно улучшает качество их предсказаний и усиливает их способность к обобщению.

Галлюцинации

Галлюцинации — фактологические неверные ответы языковых моделей, ложность которых сложно распознать. Их важная черта — правдоподобность. Примеры галлюцинаций — это случаи, когда языковая модель говорит о несуществующем рассказе известного писателя, приводит ложную статистику об обороте компании, дает неверный совет.

Галлюцинации возникают из-за несовершенства большого массива обучающих данных, качество и достоверность которых могут значительно варьироваться. Кроме того, модель обучается на данных, собранных до определённого момента времени, поэтому она не способна отвечать на вопросы о событиях, произошедших после этого периода.

Для уменьшения количества галлюцинаций в моделях используется, например, метод Retrieval-Augmented Generation (RAG). ОН позволяет интегрировать внешние источники данных, такие как база с документацией компании, энциклопедии или интернет, в работу языковой модели, чтобы повысить точность ответов.

Эмбеддинги

Синоним эмбеддингов — векторное представление данных, которое обычно получают с помощью моделей машинного обучения. Это компактные наборы чисел фиксированной длины. Каждое число в таком наборе отвечает за определённую характеристику данных, а весь набор в целом описывает данные. Например, эмбеддинг слова может состоять из 128 чисел, где пятое число указывает на род слова, а 100-е — на принадлежность слова к категории, описывающей животных.

В виде эмбеддинга можно представить изображения, видео, тексты, аудио, а также более специфичные данные: профиль пользователя соцсети, товар в магазине или молекулы. Такие числовые наборы легко хранить в памяти компьютера, и он может оценивать степень их сходства. Благодаря этим свойствам эмбеддинги позволяют оперировать данными на уровне их смысла.

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
Нобелевские премии за нейросети, ИИ-функции в приложениях Adobe, новые модели от Mistral

Рассказываем, что произошло в мире ИИ за последнее время.

Нобелевская премия за ИИ?

Сразу две нобелевские премии получили исследователи в области машинного обучения.

Премией по физике были награждены Джон Хопфилд и Джеффри Хинтон (его также называют крёстным отцом ИИ) за «фундаментальные открытия и изобретения, которые сделали возможным машинное обучение с использованием нейронных сетей». Оба учёных использовали концепции из физики при разработке своих моделей: сетей Хопфилда и машины Больцмана.

Лауреатами премии по химии стали Дэвид Бейкер за «вычислительный дизайн белков», а также Демис Хассабис, руководитель Google DeepMind, и Джон Джампер — за «предсказание структур белков». Дэвид Бейкер одним из первых разработал вычислительные методы для дизайна новых белков. Демис Хассабис и Джон Джампер являются авторами метода AlphaFold, который способен по последовательности аминокислот, соответствующей белку, предсказывать его 3D-структуру. Ранее мы писали о выходе AlphaFold 3, а также об устройстве самого метода.

Обе награды вызвали неоднозначную реакцию в научном сообществе из-за косвенной связи работ с научными областями, в которых были номинированы учёные, — физикой и химией.

Генеративный ИИ в продуктах Adobe

На недавней презентации Adobe Max компания представила новые функции на базе нейросетей.

Photoshop получил функции Generative Fill и Generative Expand, с помощью которых пользователь может «расширить» изображения: например, дорисовать по бокам фото пейзажа. Помимо этого появилась функция Distraction Removal, позволяющая автоматически находить и убирать визуальный шум вроде проводов или прохожих.

Пользователи, работающие с видео, теперь могут сгенерировать в Premiere Pro несколько кадров в произвольном месте записи. Это может быть полезным в ситуациях, когда фрагмент резко обрывается или когда видеоряд нужно выровнять с аудиопотоком.

Новинки от Mistral

Французская компания Mistral выпустила две новые миниатюрные языковые модели Ministral с 3 и 8 млрд параметров. Модели подходят для локального запуска на мобильных устройствах. По показателям в основных тестах обе версии Ministral существенно опережают модели, сопоставимых размеров от Google и Meta*. Ministral выложен в открытый доступ для исследовательских целей, а для коммерческого использования компания предлагает платный API.

Mistral была основана выходцами из Meta*, которые работали над первой версией LLama, и стала известна после релиза Mistral 7B. Эта языковая модель превосходила по качеству LLama и при этом была доступна для коммерческого использования бесплатно, чем привлекла интерес со стороны ИИ-сообщества.

​​*Компания Meta признана экстремистской, а её деятельность запрещена на территории РФ

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
«Системный Блокъ» объявляет осенний набор участников!

«Системный Блокъ» расширяется и приглашает новых авторов, редакторов, менеджеров, дата-аналитиков. Мы — волонтерское издание. Нас объединяет интерес к науке и технологиям, а также желание вдохновлять людей интересными материалами, исследованиями, новостями, тестами и т. п. Среди нас есть филологи, программисты, менеджеры, историки, журналисты и аналитики — люди из совершенно разных сфер.

Ниже вы найдете набор ролей, которые могут быть интересны вам или вашим друзьям. Если что-то из этого вам близко, добро пожаловать к нам! Если вы хотите присоединиться, но идеальной роли нет, то все равно оставляйте заявку!

В посте — неполный перечень ролей, которые сейчас открыты, а в статье  — подробное описание задач и пожеланий к участникам.

1. Авторы в рубрики — ищем желающих писать для рубрик «Филология», «Общество», «Образование», «Биоинформатика», «Как это работает», «Тесты».
2. Кураторы рубрик «Археология», NLP, «Тесты»
3. Редакторы текстов
4. SMM-Lead / Менеджер отдела SMM
5. Выпускающие редакторы для соцсетей (SMM)
6. Продюсер дата-исследований
7. PR-менеджер
8. HR-менеджер
9. Менеджер студенческих практик
10. Продакт-менеджер и программист сайта
11. Дизайнер
12. Ивент-менеджер
13. Продакт/проджект-менеджер на новые проекты
14. Программист в команду «Пишу тебе»

Если вас заинтересовала одна из ролей – приглашаем
заполнить форму до 7 ноября. Проект полностью волонтерский, мы не платим денег. Зато у нас человечный менеджмент, отлаженные процессы и хорошая репутация в русском научпоп-сообществе. Присоединяйтесь!

upd. Продлили набор до 7 ноября

🤖 «Системный Блокъ» @sysblok
Please open Telegram to view this post
VIEW IN TELEGRAM
2024/12/03 03:48:32
Back to Top
HTML Embed Code: