#ТерминыИопределения
⚡️ Что такое «техническое решение»?
В основе любых технических решений, которые разрабатывает инженер, должна быть его идея что-то создать, улучшить, усилить, увеличить, уменьшить или преодолеть. Вариантов, как это сделать без негативных последствий, должно быть множество, из которого выбирается самый рациональный и полезный. Такое решение будет называться уже проектным, и оно необязательно должно быть экономически выгодным для кого-то. Надо понимать, что если решение инженера-проектанта рационально, то оно будет полезным всегда и для всех. Поэтому современные технические решения не должны замыкаться на устаревших нормативных показателях, основанных на вероятностных расчетах. Иначе это будет не разработанное техническое решение, а копия того, что уже было.
💚 Например, в добывающих технологиях все технические решения 20-го века сводятся к раскалыванию, сепарации или измельчению, т. е. к вычитанию малого из большого, но с остатком. В перерабатывающих технологиях мы, наоборот, что-то смешиваем, свариваем, скручиваем, паяем, напыляем, т. е. складываем в какую-либо форму и тоже с остатком в виде отходов, издержек, затрат и опасностей.
Получается, инженер при разработке технических решений ограничивал себя двумя простейшими математическими действиями, в результате выполнения которых всегда образуется не нужный никому «остаток». Очевидно, что новое поколение инженеров-технологов и инженеров-исследователей обязано учиться разрабатывать варианты технических решений, основанных не на «арифметике остатков», а на других математических алгоритмах, которые в проектной практике пока не применяются.
❗️ Пора уже осваивать технологические алгоритмы, основанные на таких математических операциях, как деление, умножение, интегрирование, логарифмирование и дифференцирование применительно к материальным, информационным и энергетическим ресурсам, например, региона. Эти математические алгоритмы всегда точны, исключают образование остатков и являются завершенными, чего не скажешь о технологиях прошлого века. Природные биотехнологии нам даже подсказывают использовать вместо алгоритма сложения или вычитания операцию умножения массы какого-либо материального ресурса на темп его разложения биотой Земли. Если соблюдать баланс в таких операциях умножения и складывать их в технологический процесс, то он будет похож на математическую операцию интегрирования с бесконечно малыми слагаемыми остатков.
Надо еще учесть, что ни одно техническое решение не будет доведено до уровня проектного и останется никому не нужным патентом, если будет касаться только, например, изготовления материала или только программного обеспечения без его привязки к конкретной машине или механизму.
Еще практика показывает, что до уровня проектного доходит только тот вариант технического решения, который разработан командой как минимум в составе материаловеда кибернетика, энергетика и технолога. Главное в этом творческом процессе — не забыть еще и про математика.
➡️ Подписаться на канал
В основе любых технических решений, которые разрабатывает инженер, должна быть его идея что-то создать, улучшить, усилить, увеличить, уменьшить или преодолеть. Вариантов, как это сделать без негативных последствий, должно быть множество, из которого выбирается самый рациональный и полезный. Такое решение будет называться уже проектным, и оно необязательно должно быть экономически выгодным для кого-то. Надо понимать, что если решение инженера-проектанта рационально, то оно будет полезным всегда и для всех. Поэтому современные технические решения не должны замыкаться на устаревших нормативных показателях, основанных на вероятностных расчетах. Иначе это будет не разработанное техническое решение, а копия того, что уже было.
Получается, инженер при разработке технических решений ограничивал себя двумя простейшими математическими действиями, в результате выполнения которых всегда образуется не нужный никому «остаток». Очевидно, что новое поколение инженеров-технологов и инженеров-исследователей обязано учиться разрабатывать варианты технических решений, основанных не на «арифметике остатков», а на других математических алгоритмах, которые в проектной практике пока не применяются.
Надо еще учесть, что ни одно техническое решение не будет доведено до уровня проектного и останется никому не нужным патентом, если будет касаться только, например, изготовления материала или только программного обеспечения без его привязки к конкретной машине или механизму.
Еще практика показывает, что до уровня проектного доходит только тот вариант технического решения, который разработан командой как минимум в составе материаловеда кибернетика, энергетика и технолога. Главное в этом творческом процессе — не забыть еще и про математика.
Please open Telegram to view this post
VIEW IN TELEGRAM
Разница между привозным продуктом и собственным в том, что его производство на собственном сырье, собственными технологиями и собственными руками будет всегда управляемым по качественным параметрам и регулируемым по объему и рентабельности. Привозить что-то можно и даже нужно, но не для промышленного производства, а лишь для пробы и сравнительной оценки.
Только при таких условиях любое хозяйство становится функционально устойчивым к внешним угрожающим факторам. Хозяин такой производственной системы обязан думать не только о текущих производственных показателях, но и формировать ее устойчивое будущее, концентрируя вокруг себя научную элиту и формируя образовательную политику. Постоянное взаимодействие с учеными не только расширяет кругозор инженера-технолога, но и еще превращает его из стороннего наблюдателя процесса старения технологий в активного созидателя новых и более совершенных. К сожалению, подобная логика русского хозяйствования работает еще не везде и не всегда.
Как бы хотелось, к примеру, чтобы результаты научных трехлетних исследований «Сколтеха» в области электрохимических систем были востребованы хотя бы у одного из всего десятка их «лучших российских производителей». Но не получается пока.
Может, действительно надо начинать с обучения их технической грамотности и методам стимулирования труда ученого на создание российских технологий? В этом должны быть заинтересованы сегодня все стороны.
У нас же есть отличные примеры, когда практически аналогичные результаты в области электрохимии реализовали ученые Уфимского университета науки и технологий, как говорится, «с колес», сразу на двух машиностроительных объектах для одновременной полировки и шлифовки металлов любой твердости. Технологию русского инженера Е. И. Шокальского специалисты действительно довели до совершенства и сделали свой собственный «станок-робот», исключив из прошлых технологий практически все возможные источники затрат и опасностей. И главное — больше мы не будем покупать чужие технологии «DryLyte».
Пора аналогичным образом создавать собственные роботизированные производства всех типов аккумуляторов, не зависимые от чужих источников сырья и оборудования. Начинать надо с мечты о наших аккумуляторах будущего и с формирования грамотного технического задания.
#ОНаукеиТехнологиях
Please open Telegram to view this post
VIEW IN TELEGRAM
Научную идею о разработке электроники из атомов и молекул многие годы пытаются решить ученые всего мира. Все это время вопрос создания работоспособных электронных приборов молекулярных размеров упирается в техническую проблему управления положением и созданием контактов к одиночной молекуле.
Многообразие таких белков с различными временами свечения и новая технология их соединения с углеродным проводником позволяет конструировать системы искусственного фотосинтеза с функциями молекулярных выпрямителей, диодов, транзисторов и логических ячеек, управляемых светом.
Пока команда преодолела только первую и самую главную трудность — технологическую. Дальше требуется научиться выборочно модифицировать различные участки нанотрубки, найти способы регулировать их размеры и изменять пространственное положение в схеме, чтобы иметь полноценный технологический процесс создания всего спектра активных и пассивных электронных устройств со сверхмалыми размерами.
Такие маленькие научные победы непременно стимулируют ученых, инвесторов и заказчиков к созданию большего, полезного и рационального. Как говорится, флаг вам в руки.
#ОНаукеиТехнологиях
Please open Telegram to view this post
VIEW IN TELEGRAM
Каждый представитель российского научного сообщества всегда имел и сегодня имеет возможность оценить свой труд по критериям подлинности, полноты и полезности для общества.
Ученые, чьи идеи и технические решения соответствуют этим критериям, становятся в России лауреатами авторитетной премии митрополита Макария.
Вот уже полтора века Макарьевская премия вручается за здравый смысл научного труда и умение ученого отличить истинное от неистинного.
В этом году премию присудили 26 ученым России. Их имена известны, результаты их труда представлены в российских журналах и монографиях.
Please open Telegram to view this post
VIEW IN TELEGRAM
Очень интересной становится для ученых тема проектирования каталитических систем. Так, в Тюменском университете на научной конференции решили создать рабочую группу для «инжиниринга каталитических процессов», а в новосибирском НЭТИ даже синтезировали катализаторы для получения водорода и углеродных наноматериалов из метана. Подобная активность приводит к мысли о том, что если в стране существует около десятка научных центров во главе с Институтом катализа, то технических проблем с производством катализаторов для промышленных технологий не должно быть вообще.
Однако это совсем не так. Зависимость от импортных поставок катализаторов для переработки углеводородов и другого сырья сохраняется уже много лет практически для всех отраслей промышленности, что свидетельствует о мнимости всей прошлой научной деятельности и сомнениях в будущей.
При этом период перехода от лабораторных результатов к промышленному внедрению любого нового катализатора составляет более 10 лет, что совсем не гарантирует сохранения свойств селективности этого катализатора в процессе эксплуатации старой технологии, в структуре которой всегда присутствуют неизвестные ученому источники опасности и затрат.
Эта грубейшая методологическая ошибка приводит к тому, что около тысячи патентов различных «каталитических систем» даже не читают, а катализаторы приобретают по старинке за границей, обосновывая это их экологичностью и надежностью. Получается, бюджетные средства тратятся дважды на одно и то же: на разработку каталитических систем и на их приобретение за границей. При этом базовые технологии получения конечных продуктов, независимо от того, каким способом мы их интенсифицируем, так и остаются затратными и опасными, старея морально и физически. Это очень похоже на старый ржавый замок, к которому подбираются все новые и новые ключи и отмычки.
#ОНаукеиТехнологиях
Please open Telegram to view this post
VIEW IN TELEGRAM
За последние две недели российские ученые предложили еще несколько своих идей и технических решений. Эксперты портала «Техносфера, подъем!» предлагают их оценить по критериям полезности и рациональности.
Please open Telegram to view this post
VIEW IN TELEGRAM
Верхом такого безумия со стороны «управленцев» университетской школой стала постановка задачи 15 ведущим российским вузам войти в мировую «сотню лучших».
Безнравственные задачи исказили алгоритм передачи знаний. Вместо схемы «от старшего к младшему» информацию разрешили передавать между сверстниками внутри одного поколения, а когда место грамотного преподавателя занял банковский «коуч» на онлайн-курсах, то младшее поколение, уже ничего не зная про промышленные технологии, стало учить старшее правилам ведения бизнеса и получения прибыли.
Чтобы начать системно исправлять ошибки, надо зафиксировать негативные последствия этого неудачного западного эксперимента. Очевидных видится три:
При желании исправить ситуацию быстро и качественно можно и нужно, привлекая к лекциям, семинарам, учебникам реальных технологических и научных лидеров — академических ученых, инженеров-технологов промышленных производств, грамотных заказчиков и высокоинтеллектуальных инвесторов перспективных технических проектов.
Уверен, что если проблемы в образовательной системе сформированы искусственно, то они решаемы. Нужно просто общее желание восстановить модель русского университета и наполнить ее реальными позитивными практиками, которые есть почти в каждом российском университете.
Подробнее читайте в «Стимуле».
Please open Telegram to view this post
VIEW IN TELEGRAM
stimul.online
Университеты России: прошлое и будущее
Если проблемы в образовательной системе сформированы искусственно, то они решаемы. Нужно просто общее желание восстановить модель русского университета и наполнить ее реальными позитивными практиками, которые уже есть почти в каждом российском университете
#ТерминыИопределения
❓ Идея — это что?
Какие ассоциации вызывает у инженера привычный для всех ученых термин «идея» или «научная идея»? Понятно, что без человека идея не возникает, он ее генератор, хранитель и носитель. Есть мнение, что любая новая идея — это объединение множества других, подсмотренных у Природы, увиденных ранее в рисунках, фильмах, сказках, услышанных в лекциях и чьих-то мыслях. Это разнообразие уже существующих внешних сигналов необходимо тому, кто нацелен на решение нужной всем задачи. Можно сформулировать так: идея является результатом синтеза множества сигналов, накапливаемых в подсознании человека для решения жизненно важных задач. По сути, это ответная реакция нашего мышления на выявленные источники затрат и опасностей, мешающие нормально жить, учиться и трудиться.
Получается, что биологический механизм возникновения идеи — один на всех и не зависит от того, кто является ее создателем, — химик, охотник, рыбак, повар, биолог или врач. С точки зрения кибернетики высказанная человеком идея в виде образа (статья, чертеж, доклад) становится информационным сигналом (signum), т. е. знаком, подтверждающим наличие у его носителя ценностных и смысловых знаний. Если такой сигнал принят инженерным сообществом, то идея превращается в информационное сообщение и даже в техническое задание.
Значит, у любой идеи есть всего три функции:
💙 информационный сигнал (например, идея объясняет суть физического явления, процесса);
💙 предупреждающее сообщение (идея опыта, раскрывающего закономерности поведения объекта, его алгоритм);
💙 побуждение к действиям (идея создания технического комплекса, прибора, материала, способа, метода, алгоритма).
Если мы говорим о научной идее, то надо договаривать и про уровень ее полезности для технологического проектного сообщества. Пока этот показатель оценивается эмоционально, указывая, например, на «гениальность» идеи, ее «патентоспособность» или «несбыточность», «разумность» и «здравый смысл».
Инженер оценивает полезность любой научной идеи более объективно на основе ее функциональной значимости. Например, если идея ученого ограничивается только функцией информирования (рекламирования), то это ассоциируется с начальным этапом реализации его потенциала. Если ученый обнаружил закономерности структуры объекта наблюдения, особенности его поведения, то его идея начинает приобретать форму, параметры которой уже можно описывать в техническом задании. Верхом творчества должна быть идея, побуждающая ученого к ее реальному воплощению в полезные для всех технологию и продукт.
Возможно, такое толкование термина «идея» внесет ясность в понимание целей и задач научной и проектной деятельности, а ученый, инженер, заказчик и инвестор смогут лучше понимать друг друга, читая «Дайджесты научных идей».
➡️ Подписаться на канал
Какие ассоциации вызывает у инженера привычный для всех ученых термин «идея» или «научная идея»? Понятно, что без человека идея не возникает, он ее генератор, хранитель и носитель. Есть мнение, что любая новая идея — это объединение множества других, подсмотренных у Природы, увиденных ранее в рисунках, фильмах, сказках, услышанных в лекциях и чьих-то мыслях. Это разнообразие уже существующих внешних сигналов необходимо тому, кто нацелен на решение нужной всем задачи. Можно сформулировать так: идея является результатом синтеза множества сигналов, накапливаемых в подсознании человека для решения жизненно важных задач. По сути, это ответная реакция нашего мышления на выявленные источники затрат и опасностей, мешающие нормально жить, учиться и трудиться.
Получается, что биологический механизм возникновения идеи — один на всех и не зависит от того, кто является ее создателем, — химик, охотник, рыбак, повар, биолог или врач. С точки зрения кибернетики высказанная человеком идея в виде образа (статья, чертеж, доклад) становится информационным сигналом (signum), т. е. знаком, подтверждающим наличие у его носителя ценностных и смысловых знаний. Если такой сигнал принят инженерным сообществом, то идея превращается в информационное сообщение и даже в техническое задание.
Значит, у любой идеи есть всего три функции:
Если мы говорим о научной идее, то надо договаривать и про уровень ее полезности для технологического проектного сообщества. Пока этот показатель оценивается эмоционально, указывая, например, на «гениальность» идеи, ее «патентоспособность» или «несбыточность», «разумность» и «здравый смысл».
Инженер оценивает полезность любой научной идеи более объективно на основе ее функциональной значимости. Например, если идея ученого ограничивается только функцией информирования (рекламирования), то это ассоциируется с начальным этапом реализации его потенциала. Если ученый обнаружил закономерности структуры объекта наблюдения, особенности его поведения, то его идея начинает приобретать форму, параметры которой уже можно описывать в техническом задании. Верхом творчества должна быть идея, побуждающая ученого к ее реальному воплощению в полезные для всех технологию и продукт.
Возможно, такое толкование термина «идея» внесет ясность в понимание целей и задач научной и проектной деятельности, а ученый, инженер, заказчик и инвестор смогут лучше понимать друг друга, читая «Дайджесты научных идей».
Please open Telegram to view this post
VIEW IN TELEGRAM
Для развития связей в системе «образование–наука–производство» с середины 20-го века при университетах начали создавать структуры с красивым названием «научный парк». В основу их деятельности была положена марксистская фраза о превращении науки в «непосредственную производительную силу», обоснованием которой стала теория «перекрестного обогащения».
В России процесс создания таких парков в конце 20-го века преследовал три цели:
Таких трудностей, с которыми столкнулись наши университеты, достигая эти цели за последние 30 лет, не было ни у кого в мире. Видимо, без трудностей нет развития. Что в итоге имеем?
Например, впечатляет работа научного парка университета ЛЭТИ. За последние четыре года по запросу потребителя здесь созданы:
Надеемся, что так и будет.
#ОНаукеиТехнологиях
Please open Telegram to view this post
VIEW IN TELEGRAM
В конце 18-го века русские анатомы и ботаники с помощью микроскопа обнаружили сходство в строении растений и животных, раскрыли структуру почки и опровергли теорию о самопроизвольном зарождении микроорганизмов.
Новые возможности микроскопа проявились в 20-м веке. Используя в качестве источника света рентгеновское излучение, с помощью этого настольного прибора были получены практически все знания в области клеточной теории организмов и структуры материи на микронном уровне.
В 21-м веке физики дали материаловедам возможность анализировать электрохимическое поведение комплексных соединений на уровне их электронных структур, используя электромагнитное излучение огромной яркости, которое включает в себя видимый свет, ультрафиолет, инфракрасное и рентгеновское излучения. Такой свет не поглощается объектом, а только лишь преломляется.
Для работы подобных микроскопов у нас в Сибири создается установка для генерации такого синхротронного излучения, управляя энергией которого с помощью томского «монохроматора» можно творить все, о чем только раньше мечтали.
Оказывается, медики смогут лечить клетку, зараженную вирусом, а нефтяники сумеют максимального выгодно извлекать углеводороды, не разрушая структуры недр. Надо ожидать и создания одностадийных технологий производства материалов с регулируемыми характеристиками и свойствами.
Получается, простой и привычный для всех микроскоп — это не просто научный прибор одного ученого-исследователя, а рабочий инструмент в технологических процессах, связанных с авиастроением,космосом, энергетикой, геохимией и нефтегазовой отраслью.
Диаметр установки — 230 метров, потому у этого варианта проекта и нет аналогов в мире. И чтобы он соответствовал критериям рациональности и полезности, требуется выполнить еще два условия.
Мы уверены, что и эта задача может быть решена в ближайшее время новым поколением физиков, кибернетиков и материаловедов.
#ОНаукеиТехнологиях
Please open Telegram to view this post
VIEW IN TELEGRAM
Мифом считается любая интерпретация опыта пережитых обществом трагических событий (войн, революций, переделов, приватизаций, санкций и т.д.). Если объяснение прошедших событий предыдущим поколением не искажает ценности каждого следующего, то миф становится позитивным и помогает молодому ученому и инженеру созидать и творить новое и полезное. В ином случае миф становится ложным и дезориентирует всех в выборе методов освоения окружающего пространства.
Такая «конкуренция» в науке и экономике в прошлом веке привела к разделению продукции на военного, гражданского и двойного назначения так, что до сих пор никто не может объяснить инженеру различия в проектных подходах к ее созданию. Например, мы уверены, что никто из инженеров ЮУрГУ не сможет объяснить, почему их оригинальное техническое решение пригодно только для одного «дизеля гражданского назначения». Непонятно также, почему система подготовки горючей смеси, разработанная в Томском университете, может использоваться в газотурбинной установке «гражданского применения», а дроны тульских студентов — лишь для военного дела. Получается, студенты учатся не проектировать новое, а насыщать дополнительными функциями старые изделия в интересах различных заказчиков. Этот миф поддерживается в университетских школах неверной интерпретацией функций инженера-исследователя и инженера-технолога, что приводит к путанице между методологией проектирования продукции и методами организации ее производства.
#ОНаукеиТехнологиях
Please open Telegram to view this post
VIEW IN TELEGRAM
Всем известно, что в результате эксплуатации технологий производства электроэнергии за счет неэффективного сжигания угля образуется много золы. До сих пор энергетики считают ее не продуктом, а отходом V класса опасности, и складируют вокруг городов и поселков, показывая пример бесхозяйственности и ограниченности научной мысли. На самом деле из золы можно получать более десятка номенклатур полезной продукции, в том числе глинозем, сплавы на основе железа, литий, коагулянты, кремний-калийные минеральные удобрения, силикагель, лигатуру, цеолиты, а также строительные, рассеянные и драгоценные металлы.
Ученые не спешат создавать промышленные технологии для комплексной переработки и уже более 40 лет ограничиваются лабораторными экспериментами над золой Рефтинской ГРЭС, используя только химические методы растворения, выщелачивания, осаждения, промывки и очистки сырья. Итог их работы — лишь патенты и научные публикации в иностранных журналах. Вот и получается, что в январе миллиграммы алюминия и скандия ученые получали в лабораториях в две стадии, а в ноябре глинозем рекомендуют получать уже за восемь стадий, оставляя в качестве вторичных отходов еще и кислотно-щелочные смеси.
Практический результат от таких исследований можно считать нулевым, так как у ученых-химиков отсутствуют конкретные технические задания от заказчиков и инвесторов. Скорее всего, таких задач на переработку золы химикам никто и не собирается ставить, так как ученые-ботаники предложили энергетикам более чистый, самый простой и очень дешевый способ избавления угольных ТЭЦ и ГРЭС от вечных источников затрат на обслуживание дополнительной инфраструктуры складирования отходов. И главное, что этот способ уже работает и позволил, например, вернуть загаженные ранее земли природному ландшафту Сухого Лога.
А для химиков осталась не доделанная еще с 19-го века технология сжигания углей, которую уже давно требуется превратить в безотходную. В этом, нам видится, и состоит главная задача химиков.
#ОНаукеиТехнологиях
Please open Telegram to view this post
VIEW IN TELEGRAM
Материаловеды УрФУ оформили очередной патент, предложив использовать не привозное, а местное сырье (смесь глинозема и извести) для изготовления элементов доменных печей. Новизна в том, что себестоимость футеровок для высокотемпературных металлургических агрегатов сокращается в два раза, а длительность их эксплуатации увеличивается за счет внедрения простых технологических тонкостей. Ученые показали, что можно управлять параметрами прочности и жаростойкости материалов, изменяя режимы охлаждения цементной смеси в очень узком диапазоне скоростей. Это, естественно, требует высокоточного аппаратурного оформления технологической схемы.
Перед нами пример хозяйственного подхода ученых к решению конкретных производственных задач за счет новых, стабильных и доступных источников исходного сырья для производства тех строительных материалов, которые мы почему-то продолжаем завозить из-за границы вместе с технологическим оборудованием.
Самое интересное, что подобные материаловедческие решения ученые предлагают производственникам уже давно. Так, еще в 2007 году материаловеды РХТУ предложили для изготовления глиноземистого цемента шламовые отходы, которые образуются при очистке воды. А недавно студенты доказали возможность использования таких техногенных отходов, как фосфогипс и алюминатный шлак, для получения высокопрочных марок цемента.
Но если сырье есть практически в каждом городе, то для его переработки в строительные материалы должны создаваться мобильные и компактные производственные системы. Вместе с тем, при всем разнообразии сырьевых источников на основе техногенных отходов, технологическая схема производства цементных смесей остается достаточно убогой, а ее совершенствование ограничивается мелкими рацпредложениями машинистов экскаваторов и операторов печей. В технологиях уже более 200 лет используются мельницы, работающие на принципе «раздавливания» с уровнем полезного действия не более 20%.
Мы до сих пор не умеем измельчать сырьевые материалы размерами от 1 000 мм до микронной дисперсности, полной однородности и чистоты в одном аппарате и в одну стадию. Даже несмотря на то, что у ученых уже есть теория, обосновывающая возможность измельчения материалов до микронной и нанометровой размерности, на практике любое требование по повышению однородности смеси превращает технологию в экономически невыгодную.
Значит, для преодоления этого противоречия перед материаловедческой наукой стоит задача не просто находить новые источники сырья, но и создавать оборудование нового поколения с управляемыми режимами измельчения.
Пока же непонятно, какая университетская школа России готовит инженеров-технологов, способных проектировать рациональные технологии для производства строительных материалов с заданными параметрами качества.
#ОНаукеиТехнологиях
Please open Telegram to view this post
VIEW IN TELEGRAM
Количество ученых, занятых поиском альтернативных источников энергии, постоянно увеличивается. Их любопытство стимулируют не только гранты, но и существующие несовершенные методы «выдавливания» энергии из материи, созданные в прошлом веке.
Чтобы как-то решать эту проблему, нам нужны понятные знания о смысле чистой энергии и ее значении. Сложность начинается с описания фундаментальных процессов образования энергии в веществе разными научными языками.
Например, биологи для получения чистой энергии готовы организовать масштабное производство бактериальных ферментов, а химики предлагают для этого установить мембрану из дисульфида молибдена между пресной и соленой водой. Физики, оперируя только им понятными терминами типа «кварковый синтез», опять просят очередной «мегагрант», чтобы к 2030 году «вскипятить вакуум» с помощью самого мощного лазера в мире, который начали создавать еще в 2007 году. По сути, предлагается продолжить проверку старого научно-фантастического концепта о том, что «материя может быть создана из ничего».
Возможно, по этой причине у нас практически не реализуются понятные всем научные идеи и простые технические решения. Например, известная и очень полезная идея ученых МЭИ, о которой мы уже сообщали.
#ОНаукеиТехнологиях
Please open Telegram to view this post
VIEW IN TELEGRAM
Мы решили открыть на портале новую рубрику — «Полезное чтиво». Будем рады, если читатели поддержат наши намерения рекомендовать для чтения все новое и полезное, во-первых, для обсуждения концептуальных направлений развития методологии проектной деятельности, а во-вторых, просто для расширения кругозора.
К сожалению, у нас нет сконцентрированной в одной научной дисциплине информации о том, как управляли процессом производства раньше, как это делают сейчас и что из нашего «управленческого опыта» пригодится в будущем. До сих пор в нашем распоряжении — устаревшие статьи и диссертации конца 20-го века, ориентирующие мышление инженера на «максимизацию прибыли за счет минимизации затрат». Исходя из таких ложных установок, мы пользуемся алгоритмом управления в режиме «вкл.-выкл.», а для анализа его эффективности используем не количественный, а вероятностный метод анализа. Негативные последствия таких антизатратных хозяйственных схем проявляются до сих пор в виде распределения ответственности за результат с девальвацией понятия «собственность» и атрофией всего человеческого.
Авторское понятие «беспризорность» вызывает ассоциацию с бесхозностью, недоделанными проектами и неиспользованными ресурсами. Поэтому после прочтения книги возникает желание переоценить свой потенциал и начать все заново, став хозяином, а не потребителем.
После всего прочитанного возможен и иной взгляд. Так как сложившиеся рынки вынуждают управлять системой (организацией) в условиях турбулентности ресурсных и информационных потоков, то, может быть, не надо «ворошить» старые рыночные ниши, а стоит формировать прототипы новых социально-производственных систем, проектируя для них более простые, более мобильные и более компактные технические комплексы, насыщая их новациями.
Читаем, думаем, обсуждаем.
Please open Telegram to view this post
VIEW IN TELEGRAM
Мы много пишем о чистоте нашей воды и отмечаем лабораторные работы ученых, рассказывающие о все новых и новых материалах для фильтров и сорбентов. К сожалению, информации о реализации подобных новаций хотя бы в регионах проживания самих ученых у нас пока нет. Такие затеи обычно останавливаются на этапе разговоров о масштабировании лабораторных методов и их адаптации для промышленного производства.
Поэтому пока вместо комплексного метода очистки грязной воды на территории конкретных промышленных объектов и хозяйств у нас действуют только «методические указания» по комплексной оценке степени их загрязненности уже вне производственных зон. Судя по ежегодным отчетам надзорных органов, именно из-за такой искусственно созданной несогласованности функций «бизнес-предпринимателей», технологов и ученых в стране вместо технологии очистки водных потоков хорошо организован процесс их загрязнения во всех гидрографических районах страны.
У нас есть лишь один пример, когда именно в логике рационального хозяйствования решена задача очистки воды с помощью простых и доступных трековых мембран. За счет строго калиброванной структуры пор и зеркальной поверхности они мгновенно делают любую воду приемлемой для питья. Этот способ ученые-физики группы Г. Н. Флёрова заимствовали у природы в конце прошлого века, а сегодня инженеры концерна «Калашников» сделали его удобным, простым и пока незаменимым в полевых условиях.
В этом случае полезность и рациональность всех иных (даже завиральных) научных идей и технологий очистки воды с помощью графена, кварца или магнетита может количественно оцениваться методом сравнения с эталоном.
Такой подход в исследованиях непременно будет нацеливать ученых на конкретный, востребованный и количественно оцениваемый результат.
#ОНаукеиТехнологиях
Please open Telegram to view this post
VIEW IN TELEGRAM
Недавно мы узнали, что дополнительно к существующим 24 национальным проектам и программам в стране запущено еще восемь. Все они нацелены на получение экономического эффекта и увеличение «объемов венчурных инвестиций». По своему содержанию нацпроекты схожи с формальными перечнями программных мероприятий и индикаторами деятельности множества отраслей и ведомств, которым поручено на конкурсной основе «администрировать» распределение трех триллионов бюджетных рублей.
Именно к такому выводу приходишь, читая, например, «Паспорт национального проекта по обеспечению технологического лидерства “Новые материалы и химия”». В этом документе на 2028–2030 годы запланировано не снижение, а увеличение доли импортозависимости страны по сырью и материалам почти в два раза (с 8 до 15%), даже при увеличении объема их производства. Непонятно, почему объемы поставок на экспорт химических средств оцениваются в тоннах, а объемы продукции для отечественных потребителей указываются в процентах. Подобные необъяснимые цифровые манипуляции как раз и свидетельствуют о формальности и безответственности счетоводов «валовой добавленной стоимости». Какую-то надежду на технологические прорывы дают специалисты университетов и академические ученые, обозначенные в паспортах как разработчики промышленных технологий. Но это тоже не соответствует действительности.
В целом нацпроекты дают количественную информацию о возможной сумме национального дохода в будущем. Но какими силами и за счет каких новаций отрасли должны гарантированно превратиться не в «финансовых», а в «технологических лидеров», непонятно.
Есть еще три явных недоработки:
Все это в совокупности вызывает большие сомнения в успешной реализации главной цели нацпроектов — обеспечении безопасности и выживаемости человека в любой точке пространства страны за счет хозяйского использования собственных ресурсов.
Будем опять надеяться на авось?
#ОНаукеиТехнологиях
Please open Telegram to view this post
VIEW IN TELEGRAM