Warning: file_put_contents(aCache/aDaily/post/AGI_and_RL/-923-924-925-925-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
Агенты ИИ | AGI_and_RL@AGI_and_RL P.924
AGI_AND_RL Telegram 924
Прикручивая ризонинг к RAGу (retrieval-augmented generation - генерации по внешним источникам информации/ответы по документам)

Попробовали просто раг поверх QwQ (на ней весь ризонинговый ресерч стоит) + еще сделали так назвываемый o1-search (тоже работает поверх QwQ), который состоит из двух модулей:

"Агентный RAG-механизм":
* Модель сама решает, когда искать внешние данные.
* Запросы для поиска формируются автоматически в процессе рассуждения
* Многократное использование поиска в одной задаче.

Моделька рассуждает, когда она считает что ей нехватает знаний, то сама вызывает поиск, получает документы, дальше рассуждает уже с новой информацией.

Модуль Reason-in-Documents (ризонит по релевантным документам):

*анализирует полученные документы (по текущему запросу, полученным релевантным документам и по предыдущей цепочке рассуждений)
*выделяет только полезную информацию

Как это все в целом работает на инференсе:

На вход получаем вопросы пользователя + инструкция по задаче;
*генерим по каждому (вопросу + инструкция) цепочку рассуждений которую нужно будет завершить.
*Начинаем генерить цепочку. Модель может захотеть поискать инфу - и сгенерит запрос в <|begin_search_query|> запрос <|end_search_query|> - идем ищем в документе, получаем релевантные чанки;
* (вопрос + инструкция) + найденные релевантные части документов + текущая цепочка рассуждений -> в Reason-in-Documents модуль, из которого нам уже возвращается хорошо подготовленная информация (формируется результат поиска) в <|begin_search_result|> результаты <|end_search_result|> тегах, вставляем это в текущую цепочку рассуждений;
* продолжаем рассуждать

И так пока все сформированные изначально цепочки не сгенерим.

Так понял, результы на скринах (RAgent и o1-search).

Search-o1: Agentic Search-Enhanced
Large Reasoning Models
https://arxiv.org/abs/2501.05366

https://github.com/sunnynexus/Search-o1

Ризонинговый дождь ☔️
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10🔥2



tgoop.com/AGI_and_RL/924
Create:
Last Update:

Прикручивая ризонинг к RAGу (retrieval-augmented generation - генерации по внешним источникам информации/ответы по документам)

Попробовали просто раг поверх QwQ (на ней весь ризонинговый ресерч стоит) + еще сделали так назвываемый o1-search (тоже работает поверх QwQ), который состоит из двух модулей:

"Агентный RAG-механизм":
* Модель сама решает, когда искать внешние данные.
* Запросы для поиска формируются автоматически в процессе рассуждения
* Многократное использование поиска в одной задаче.

Моделька рассуждает, когда она считает что ей нехватает знаний, то сама вызывает поиск, получает документы, дальше рассуждает уже с новой информацией.

Модуль Reason-in-Documents (ризонит по релевантным документам):

*анализирует полученные документы (по текущему запросу, полученным релевантным документам и по предыдущей цепочке рассуждений)
*выделяет только полезную информацию

Как это все в целом работает на инференсе:

На вход получаем вопросы пользователя + инструкция по задаче;
*генерим по каждому (вопросу + инструкция) цепочку рассуждений которую нужно будет завершить.
*Начинаем генерить цепочку. Модель может захотеть поискать инфу - и сгенерит запрос в <|begin_search_query|> запрос <|end_search_query|> - идем ищем в документе, получаем релевантные чанки;
* (вопрос + инструкция) + найденные релевантные части документов + текущая цепочка рассуждений -> в Reason-in-Documents модуль, из которого нам уже возвращается хорошо подготовленная информация (формируется результат поиска) в <|begin_search_result|> результаты <|end_search_result|> тегах, вставляем это в текущую цепочку рассуждений;
* продолжаем рассуждать

И так пока все сформированные изначально цепочки не сгенерим.

Так понял, результы на скринах (RAgent и o1-search).

Search-o1: Agentic Search-Enhanced
Large Reasoning Models
https://arxiv.org/abs/2501.05366

https://github.com/sunnynexus/Search-o1

Ризонинговый дождь ☔️

BY Агенты ИИ | AGI_and_RL






Share with your friend now:
tgoop.com/AGI_and_RL/924

View MORE
Open in Telegram


Telegram News

Date: |

In handing down the sentence yesterday, deputy judge Peter Hui Shiu-keung of the district court said that even if Ng did not post the messages, he cannot shirk responsibility as the owner and administrator of such a big group for allowing these messages that incite illegal behaviors to exist. Although some crypto traders have moved toward screaming as a coping mechanism, several mental health experts call this therapy a pseudoscience. The crypto community finds its way to engage in one or the other way and share its feelings with other fellow members. Each account can create up to 10 public channels Ng, who had pleaded not guilty to all charges, had been detained for more than 20 months. His channel was said to have contained around 120 messages and photos that incited others to vandalise pro-government shops and commit criminal damage targeting police stations. Telegram channels enable users to broadcast messages to multiple users simultaneously. Like on social media, users need to subscribe to your channel to get access to your content published by one or more administrators.
from us


Telegram Агенты ИИ | AGI_and_RL
FROM American